IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v193y2025ics0965856425000412.html
   My bibliography  Save this article

Spatial transferability of machine learning based models for ride-hailing demand prediction

Author

Listed:
  • Roy, Sudipta
  • Nahmias-Biran, Bat-hen
  • Hasan, Samiul

Abstract

Accurate prediction of ride-hailing demand is crucial to provide quality service to consumers, to effectively schedule vehicles, and to maintain a well-functioning transportation system. As information of ride-hailing demand in most of the cities is not available, assessing the spatial transferability of ride-hailing demand models is an important research problem. To address this problem, this study aims to develop a ride-hailing demand prediction model using trip information available from ride-hailing service providers and to test the spatial transferability of the model. Using aggregated trip data, we have developed ride-hailing generation and attraction prediction models using several well-known machine learning algorithms such as random forest, extreme gradient boost, support vector machine, and artificial neural network for two study areas including the New York City and Chicago with similar built environment and land use characteristics. The random forest and extreme gradient boost models have superior performance for predicting ride-hailing demand with both the training and testing data in the intra-city level. The developed models for the New York City are later used to predict the ride-hailing demand of Chicago using two different transfer learning approaches. A knowledge transfer approach shows better transferability potential of ride-hailing demand models with reduced error rates. An analysis of prediction errors suggests that the models achieve better accuracy to predict demand on areas near central business districts or during peak periods.

Suggested Citation

  • Roy, Sudipta & Nahmias-Biran, Bat-hen & Hasan, Samiul, 2025. "Spatial transferability of machine learning based models for ride-hailing demand prediction," Transportation Research Part A: Policy and Practice, Elsevier, vol. 193(C).
  • Handle: RePEc:eee:transa:v:193:y:2025:i:c:s0965856425000412
    DOI: 10.1016/j.tra.2025.104413
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856425000412
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2025.104413?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kwang-Sub Lee & Jin Ki Eom, 2020. "Development and spatial transferability of hourly activity space attraction models by activity type at a census block level," Transportation Planning and Technology, Taylor & Francis Journals, vol. 43(2), pages 188-207, February.
    2. Yu, Haitao & Peng, Zhong-Ren, 2019. "Exploring the spatial variation of ridesourcing demand and its relationship to built environment and socioeconomic factors with the geographically weighted Poisson regression," Journal of Transport Geography, Elsevier, vol. 75(C), pages 147-163.
    3. Morteza Taiebat & Elham Amini & Ming Xu, 2022. "Sharing Behavior in Ride-hailing Trips: A Machine Learning Inference Approach," Papers 2201.12696, arXiv.org.
    4. Hall, Jonathan D. & Palsson, Craig & Price, Joseph, 2018. "Is Uber a substitute or complement for public transit?," Journal of Urban Economics, Elsevier, vol. 108(C), pages 36-50.
    5. Yang, Zhuo & Franz, Mark L. & Zhu, Shanjiang & Mahmoudi, Jina & Nasri, Arefeh & Zhang, Lei, 2018. "Analysis of Washington, DC taxi demand using GPS and land-use data," Journal of Transport Geography, Elsevier, vol. 66(C), pages 35-44.
    6. Ruiz, Elkin & Yushimito, Wilfredo F. & Aburto, Luis & de la Cruz, Rolando, 2024. "Predicting passenger satisfaction in public transportation using machine learning models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 181(C).
    7. Zhang, Xiaojian & Zhao, Xilei, 2022. "Machine learning approach for spatial modeling of ridesourcing demand," Journal of Transport Geography, Elsevier, vol. 100(C).
    8. Zheng, Yunhan & Meredith-Karam, Patrick & Stewart, Anson & Kong, Hui & Zhao, Jinhua, 2023. "Impacts of congestion pricing on ride-hailing ridership: Evidence from Chicago," Transportation Research Part A: Policy and Practice, Elsevier, vol. 170(C).
    9. Yan, Xiang & Liu, Xinyu & Zhao, Xilei, 2020. "Using machine learning for direct demand modeling of ridesourcing services in Chicago," Journal of Transport Geography, Elsevier, vol. 83(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Sicheng & Du, Rui & Lee, Annie S., 2024. "Ridesourcing regulation and traffic speeds: A New York case," Journal of Transport Geography, Elsevier, vol. 116(C).
    2. Yuan Liang & Bingjie Yu & Xiaojian Zhang & Yi Lu & Linchuan Yang, 2022. "The Short-term Impact of Congestion Taxes on Ridesourcing Demand and Traffic Congestion: Evidence from Chicago," Papers 2207.01793, arXiv.org, revised Feb 2023.
    3. Soria, Jason & Stathopoulos, Amanda, 2021. "Investigating socio-spatial differences between solo ridehailing and pooled rides in diverse communities," Journal of Transport Geography, Elsevier, vol. 95(C).
    4. Liang, Yuan & Yu, Bingjie & Zhang, Xiaojian & Lu, Yi & Yang, Linchuan, 2023. "The short-term impact of congestion taxes on ridesourcing demand and traffic congestion: Evidence from Chicago," Transportation Research Part A: Policy and Practice, Elsevier, vol. 172(C).
    5. Du, Mingyang & Cheng, Lin & Li, Xuefeng & Liu, Qiyang & Yang, Jingzong, 2022. "Spatial variation of ridesplitting adoption rate in Chicago," Transportation Research Part A: Policy and Practice, Elsevier, vol. 164(C), pages 13-37.
    6. Zhang, Xiaojian & Zhou, Zhengze & Xu, Yiming & Zhao, Xilei, 2024. "Analyzing spatial heterogeneity of ridesourcing usage determinants using explainable machine learning," Journal of Transport Geography, Elsevier, vol. 114(C).
    7. Prateek Bansal & Akanksha Sinha & Rubal Dua & Ricardo Daziano, 2019. "Eliciting Preferences of Ridehailing Users and Drivers: Evidence from the United States," Papers 1904.06695, arXiv.org.
    8. Dean, Matthew D. & Kockelman, Kara M., 2021. "Spatial variation in shared ride-hail trip demand and factors contributing to sharing: Lessons from Chicago," Journal of Transport Geography, Elsevier, vol. 91(C).
    9. Kong, Hui & Zhang, Xiaohu & Zhao, Jinhua, 2020. "How does ridesourcing substitute for public transit? A geospatial perspective in Chengdu, China," Journal of Transport Geography, Elsevier, vol. 86(C).
    10. Li, Yanchao & Vignon, Daniel, 2024. "Do ride-hailing congestion fees in NYC work?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 190(C).
    11. Zhang, Xiaojian & Zhao, Xilei, 2022. "Machine learning approach for spatial modeling of ridesourcing demand," Journal of Transport Geography, Elsevier, vol. 100(C).
    12. Wang, Sicheng & Huang, Xiao & Shen, Qing, 2024. "Disparities in resilience and recovery of ridesourcing usage during COVID-19," Journal of Transport Geography, Elsevier, vol. 114(C).
    13. Du, Qiang & Zhou, Yuqing & Huang, Youdan & Wang, Yalei & Bai, Libiao, 2022. "Spatiotemporal exploration of the non-linear impacts of accessibility on metro ridership," Journal of Transport Geography, Elsevier, vol. 102(C).
    14. Ngo, Nicole S. & Götschi, Thomas & Clark, Benjamin Y., 2021. "The effects of ride-hailing services on bus ridership in a medium-sized urban area using micro-level data: Evidence from the Lane Transit District," Transport Policy, Elsevier, vol. 105(C), pages 44-53.
    15. Guanwei Zhao & Zhitao Li & Yuzhen Shang & Muzhuang Yang, 2022. "How Does the Urban Built Environment Affect Online Car-Hailing Ridership Intensity among Different Scales?," IJERPH, MDPI, vol. 19(9), pages 1-25, April.
    16. Haitao Yu & Zhong-Ren Peng, 2020. "The impacts of built environment on ridesourcing demand: A neighbourhood level analysis in Austin, Texas," Urban Studies, Urban Studies Journal Limited, vol. 57(1), pages 152-175, January.
    17. Jinjun Tang & Fan Gao & Fang Liu & Wenhui Zhang & Yong Qi, 2019. "Understanding Spatio-Temporal Characteristics of Urban Travel Demand Based on the Combination of GWR and GLM," Sustainability, MDPI, vol. 11(19), pages 1-19, October.
    18. Li, Shengxiao(Alex) & Zhai, Wei & Jiao, Junfeng & Wang, Chao (Kenneth), 2022. "Who loses and who wins in the ride-hailing era? A case study of Austin, Texas," Transport Policy, Elsevier, vol. 120(C), pages 130-138.
    19. Chen, Chao & Feng, Tao & Ding, Chuan & Yu, Bin & Yao, Baozhen, 2021. "Examining the spatial-temporal relationship between urban built environment and taxi ridership: Results of a semi-parametric GWPR model," Journal of Transport Geography, Elsevier, vol. 96(C).
    20. Yan, Xiang & Liu, Xinyu & Zhao, Xilei, 2020. "Using machine learning for direct demand modeling of ridesourcing services in Chicago," Journal of Transport Geography, Elsevier, vol. 83(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:193:y:2025:i:c:s0965856425000412. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.