IDEAS home Printed from https://ideas.repec.org/a/eee/thpobi/v97y2014icp35-48.html
   My bibliography  Save this article

A renewal theory approach to IBD sharing

Author

Listed:
  • Carmi, Shai
  • Wilton, Peter R.
  • Wakeley, John
  • Pe’er, Itsik

Abstract

A long genomic segment inherited by a pair of individuals from a single, recent common ancestor is said to be identical-by-descent (IBD). Shared IBD segments have numerous applications in genetics, from demographic inference to phasing, imputation, pedigree reconstruction, and disease mapping. Here, we provide a theoretical analysis of IBD sharing under Markovian approximations of the coalescent with recombination. We describe a general framework for the IBD process along the chromosome under the Markovian models (SMC/SMC’), as well as introduce and justify a new model, which we term the renewal approximation, under which lengths of successive segments are independent. Then, considering the infinite-chromosome limit of the IBD process, we recover previous results (for SMC) and derive new results (for SMC’) for the mean number of shared segments longer than a cutoff and the fraction of the chromosome found in such segments. We then use renewal theory to derive an expression (in Laplace space) for the distribution of the number of shared segments and demonstrate implications for demographic inference. We also compute (again, in Laplace space) the distribution of the fraction of the chromosome in shared segments, from which we obtain explicit expressions for the first two moments. Finally, we generalize all results to populations with a variable effective size.

Suggested Citation

  • Carmi, Shai & Wilton, Peter R. & Wakeley, John & Pe’er, Itsik, 2014. "A renewal theory approach to IBD sharing," Theoretical Population Biology, Elsevier, vol. 97(C), pages 35-48.
  • Handle: RePEc:eee:thpobi:v:97:y:2014:i:c:p:35-48
    DOI: 10.1016/j.tpb.2014.08.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040580914000562
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tpb.2014.08.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hobolth, Asger & Jensen, Jens Ledet, 2014. "Markovian approximation to the finite loci coalescent with recombination along multiple sequences," Theoretical Population Biology, Elsevier, vol. 98(C), pages 48-58.
    2. Heng Li & Richard Durbin, 2011. "Inference of human population history from individual whole-genome sequences," Nature, Nature, vol. 475(7357), pages 493-496, July.
    3. Priya Moorjani & Nick Patterson & Po-Ru Loh & Mark Lipson & Péter Kisfali & Bela I Melegh & Michael Bonin & Ľudevít Kádaši & Olaf Rieß & Bonnie Berger & David Reich & Béla Melegh, 2013. "Reconstructing Roma History from Genome-Wide Data," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-11, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kerdoncuff, Elise & Lambert, Amaury & Achaz, Guillaume, 2020. "Testing for population decline using maximal linkage disequilibrium blocks," Theoretical Population Biology, Elsevier, vol. 134(C), pages 171-181.
    2. Johndrow, James E. & Palacios, Julia A., 2019. "Exact limits of inference in coalescent models," Theoretical Population Biology, Elsevier, vol. 125(C), pages 75-93.
    3. Severson, Alissa L. & Carmi, Shai & Rosenberg, Noah A., 2021. "Variance and limiting distribution of coalescence times in a diploid model of a consanguineous population," Theoretical Population Biology, Elsevier, vol. 139(C), pages 50-65.
    4. Deng, Yun & Song, Yun S. & Nielsen, Rasmus, 2021. "The distribution of waiting distances in ancestral recombination graphs," Theoretical Population Biology, Elsevier, vol. 141(C), pages 34-43.
    5. Cotter, Daniel J. & Severson, Alissa L. & Carmi, Shai & Rosenberg, Noah A., 2022. "Limiting distribution of X-chromosomal coalescence times under first-cousin consanguineous mating," Theoretical Population Biology, Elsevier, vol. 147(C), pages 1-15.
    6. Cotter, Daniel J. & Severson, Alissa L. & Rosenberg, Noah A., 2021. "The effect of consanguinity on coalescence times on the X chromosome," Theoretical Population Biology, Elsevier, vol. 140(C), pages 32-43.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Deng, Yun & Song, Yun S. & Nielsen, Rasmus, 2021. "The distribution of waiting distances in ancestral recombination graphs," Theoretical Population Biology, Elsevier, vol. 141(C), pages 34-43.
    2. Gideon S Bradburd & Peter L Ralph & Graham M Coop, 2016. "A Spatial Framework for Understanding Population Structure and Admixture," PLOS Genetics, Public Library of Science, vol. 12(1), pages 1-38, January.
    3. Juraj Bergman & Rasmus Ø. Pedersen & Erick J. Lundgren & Rhys T. Lemoine & Sophie Monsarrat & Elena A. Pearce & Mikkel H. Schierup & Jens-Christian Svenning, 2023. "Worldwide Late Pleistocene and Early Holocene population declines in extant megafauna are associated with Homo sapiens expansion rather than climate change," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Ya-Mei Ding & Xiao-Xu Pang & Yu Cao & Wei-Ping Zhang & Susanne S. Renner & Da-Yong Zhang & Wei-Ning Bai, 2023. "Genome structure-based Juglandaceae phylogenies contradict alignment-based phylogenies and substitution rates vary with DNA repair genes," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    5. Romain Fournier & Zoi Tsangalidou & David Reich & Pier Francesco Palamara, 2023. "Haplotype-based inference of recent effective population size in modern and ancient DNA samples," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    6. Steinrücken, Matthias & Paul, Joshua S. & Song, Yun S., 2013. "A sequentially Markov conditional sampling distribution for structured populations with migration and recombination," Theoretical Population Biology, Elsevier, vol. 87(C), pages 51-61.
    7. Barton, N.H. & Etheridge, A.M. & Kelleher, J. & Véber, A., 2013. "Inference in two dimensions: Allele frequencies versus lengths of shared sequence blocks," Theoretical Population Biology, Elsevier, vol. 87(C), pages 105-119.
    8. Guangping Huang & Lingyun Song & Xin Du & Xin Huang & Fuwen Wei, 2023. "Evolutionary genomics of camouflage innovation in the orchid mantis," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    9. Legried, Brandon & Terhorst, Jonathan, 2022. "Rates of convergence in the two-island and isolation-with-migration models," Theoretical Population Biology, Elsevier, vol. 147(C), pages 16-27.
    10. Hobolth, Asger & Siri-Jégousse, Arno & Bladt, Mogens, 2019. "Phase-type distributions in population genetics," Theoretical Population Biology, Elsevier, vol. 127(C), pages 16-32.
    11. Jörn Bethune & April Kleppe & Søren Besenbacher, 2022. "A method to build extended sequence context models of point mutations and indels," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    12. Wilton, Peter R. & Baduel, Pierre & Landon, Matthieu M. & Wakeley, John, 2017. "Population structure and coalescence in pedigrees: Comparisons to the structured coalescent and a framework for inference," Theoretical Population Biology, Elsevier, vol. 115(C), pages 1-12.
    13. Hobolth, Asger & Jensen, Jens Ledet, 2014. "Markovian approximation to the finite loci coalescent with recombination along multiple sequences," Theoretical Population Biology, Elsevier, vol. 98(C), pages 48-58.
    14. Kerdoncuff, Elise & Lambert, Amaury & Achaz, Guillaume, 2020. "Testing for population decline using maximal linkage disequilibrium blocks," Theoretical Population Biology, Elsevier, vol. 134(C), pages 171-181.
    15. Youjie Zhao & Chengyong Su & Bo He & Ruie Nie & Yunliang Wang & Junye Ma & Jingyu Song & Qun Yang & Jiasheng Hao, 2023. "Dispersal from the Qinghai-Tibet plateau by a high-altitude butterfly is associated with rapid expansion and reorganization of its genome," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    16. He Yu & Alexandra Jamieson & Ardern Hulme-Beaman & Chris J. Conroy & Becky Knight & Camilla Speller & Hiba Al-Jarah & Heidi Eager & Alexandra Trinks & Gamini Adikari & Henriette Baron & Beate Böhlendo, 2022. "Palaeogenomic analysis of black rat (Rattus rattus) reveals multiple European introductions associated with human economic history," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    17. Aoki, Kenichi & Wakano, Joe Yuichiro, 2022. "Hominin forager technology, food sharing, and diet breadth," Theoretical Population Biology, Elsevier, vol. 144(C), pages 37-48.
    18. Yuan Yin & Huizhong Fan & Botong Zhou & Yibo Hu & Guangyi Fan & Jinhuan Wang & Fan Zhou & Wenhui Nie & Chenzhou Zhang & Lin Liu & Zhenyu Zhong & Wenbo Zhu & Guichun Liu & Zeshan Lin & Chang Liu & Jion, 2021. "Molecular mechanisms and topological consequences of drastic chromosomal rearrangements of muntjac deer," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    19. Yupeng Sang & Zhiqin Long & Xuming Dan & Jiajun Feng & Tingting Shi & Changfu Jia & Xinxin Zhang & Qiang Lai & Guanglei Yang & Hongying Zhang & Xiaoting Xu & Huanhuan Liu & Yuanzhong Jiang & Pär K. In, 2022. "Genomic insights into local adaptation and future climate-induced vulnerability of a keystone forest tree in East Asia," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    20. Kevin J Liu & Jingxuan Dai & Kathy Truong & Ying Song & Michael H Kohn & Luay Nakhleh, 2014. "An HMM-Based Comparative Genomic Framework for Detecting Introgression in Eukaryotes," PLOS Computational Biology, Public Library of Science, vol. 10(6), pages 1-13, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:thpobi:v:97:y:2014:i:c:p:35-48. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/intelligence .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.