IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v96y2015icp204-211.html
   My bibliography  Save this article

Regression trees and forests for non-homogeneous Poisson processes

Author

Listed:
  • Mathlouthi, Walid
  • Fredette, Marc
  • Larocque, Denis

Abstract

We propose tree and random forest methods for non-homogeneous Poisson processes. The splitting criterion is derived from a model with a piecewise constant rate function. A simulation study shows that the new method performs well.

Suggested Citation

  • Mathlouthi, Walid & Fredette, Marc & Larocque, Denis, 2015. "Regression trees and forests for non-homogeneous Poisson processes," Statistics & Probability Letters, Elsevier, vol. 96(C), pages 204-211.
  • Handle: RePEc:eee:stapro:v:96:y:2015:i:c:p:204-211
    DOI: 10.1016/j.spl.2014.09.025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715214003459
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2014.09.025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Seong-Keon Lee & Seohoon Jin, 2006. "Decision tree approaches for zero-inflated count data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 33(8), pages 853-865.
    2. Choi, Yunhee & Ahn, Hongshik & Chen, James J., 2005. "Regression trees for analysis of count data with extra Poisson variation," Computational Statistics & Data Analysis, Elsevier, vol. 49(3), pages 893-915, June.
    3. Biau, Gérard & Devroye, Luc, 2010. "On the layered nearest neighbour estimate, the bagged nearest neighbour estimate and the random forest method in regression and classification," Journal of Multivariate Analysis, Elsevier, vol. 101(10), pages 2499-2518, November.
    4. Keon Lee, Seong, 2005. "On generalized multivariate decision tree by using GEE," Computational Statistics & Data Analysis, Elsevier, vol. 49(4), pages 1105-1119, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nan-Ting Liu & Feng-Chang Lin & Yu-Shan Shih, 2020. "Count regression trees," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(1), pages 5-27, March.
    2. Wei-Yin Loh, 2014. "Fifty Years of Classification and Regression Trees," International Statistical Review, International Statistical Institute, vol. 82(3), pages 329-348, December.
    3. Hsiao, Wei-Cheng & Shih, Yu-Shan, 2007. "Splitting variable selection for multivariate regression trees," Statistics & Probability Letters, Elsevier, vol. 77(3), pages 265-271, February.
    4. Luu, Tung Duy & Fadili, Jalal & Chesneau, Christophe, 2019. "PAC-Bayesian risk bounds for group-analysis sparse regression by exponential weighting," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 209-233.
    5. Biau, Gérard & Devroye, Luc & Dujmović, Vida & Krzyżak, Adam, 2012. "An affine invariant k-nearest neighbor regression estimate," Journal of Multivariate Analysis, Elsevier, vol. 112(C), pages 24-34.
    6. Mendez, Guillermo & Lohr, Sharon, 2011. "Estimating residual variance in random forest regression," Computational Statistics & Data Analysis, Elsevier, vol. 55(11), pages 2937-2950, November.
    7. Susan Athey & Julie Tibshirani & Stefan Wager, 2016. "Generalized Random Forests," Papers 1610.01271, arXiv.org, revised Apr 2018.
    8. Jincheng Shen & Lu Wang & Jeremy M. G. Taylor, 2017. "Estimation of the optimal regime in treatment of prostate cancer recurrence from observational data using flexible weighting models," Biometrics, The International Biometric Society, vol. 73(2), pages 635-645, June.
    9. Gérard Biau & Erwan Scornet, 2016. "A random forest guided tour," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(2), pages 197-227, June.
    10. Paola Zuccolotto & Marco Sandri & Marica Manisera, 2023. "Spatial performance analysis in basketball with CART, random forest and extremely randomized trees," Annals of Operations Research, Springer, vol. 325(1), pages 495-519, June.
    11. Aristeidis Mystakidis & Paraskevas Koukaras & Nikolaos Tsalikidis & Dimosthenis Ioannidis & Christos Tjortjis, 2024. "Energy Forecasting: A Comprehensive Review of Techniques and Technologies," Energies, MDPI, vol. 17(7), pages 1-33, March.
    12. Uguccioni, James, 2022. "The long-run effects of parental unemployment in childhood," CLEF Working Paper Series 45, Canadian Labour Economics Forum (CLEF), University of Waterloo.
    13. Guoyi Zhang & Yan Lu, 2012. "Bias-corrected random forests in regression," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(1), pages 151-160, March.
    14. Dine, Abdessamad & Larocque, Denis & Bellavance, François, 2009. "Multivariate trees for mixed outcomes," Computational Statistics & Data Analysis, Elsevier, vol. 53(11), pages 3795-3804, September.
    15. Hajjem, Ahlem & Bellavance, François & Larocque, Denis, 2011. "Mixed effects regression trees for clustered data," Statistics & Probability Letters, Elsevier, vol. 81(4), pages 451-459, April.
    16. Ramosaj, Burim & Pauly, Markus, 2019. "Consistent estimation of residual variance with random forest Out-Of-Bag errors," Statistics & Probability Letters, Elsevier, vol. 151(C), pages 49-57.
    17. Irfan Ullah & Rehan Ullah Khan & Fan Yang & Lunchakorn Wuttisittikulkij, 2020. "Deep Learning Image-Based Defect Detection in High Voltage Electrical Equipment," Energies, MDPI, vol. 13(2), pages 1-17, January.
    18. Peter Calhoun & Richard A. Levine & Juanjuan Fan, 2021. "Repeated measures random forests (RMRF): Identifying factors associated with nocturnal hypoglycemia," Biometrics, The International Biometric Society, vol. 77(1), pages 343-351, March.
    19. Zhexiao Lin & Fang Han, 2022. "On regression-adjusted imputation estimators of the average treatment effect," Papers 2212.05424, arXiv.org, revised Jan 2023.
    20. Marie-Hélène Roy & Denis Larocque, 2012. "Robustness of random forests for regression," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(4), pages 993-1006, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:96:y:2015:i:c:p:204-211. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.