IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Testing the homogeneity of inverse Gaussian scale-like parameters

Listed author(s):
  • Chang, Ming
  • You, Xuqun
  • Wen, Muqing
Registered author(s):

    A test for the homogeneity of normal variances was proposed by Liu and Xu [Liu, X.H., Xu, X.Z., 2010. A generalized p-value approach for testing the homogeneity of variances. Statistics and Probability Letters 80, 1486–1491]. For testing the homogeneity of inverse Gaussian scale-like parameters, a parallel test is developed in this article. The proposed test is proved to have exact frequent property. The merits of the proposed method are numerically compared with the existing method with respect to their sizes and powers under different scenarios. The simulation results show that the proposed approach can perform hypothesis testing with satisfactory sizes and powers.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Statistics & Probability Letters.

    Volume (Year): 82 (2012)
    Issue (Month): 10 ()
    Pages: 1755-1760

    in new window

    Handle: RePEc:eee:stapro:v:82:y:2012:i:10:p:1755-1760
    DOI: 10.1016/j.spl.2012.05.013
    Contact details of provider: Web page:

    Order Information: Postal:

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    in new window

    1. Liu, Xuhua & Xu, Xingzhong, 2010. "A new generalized p-value approach for testing the homogeneity of variances," Statistics & Probability Letters, Elsevier, vol. 80(19-20), pages 1486-1491, October.
    2. Tian, Lili, 2006. "Testing equality of inverse Gaussian means under heterogeneity, based on generalized test variable," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 1156-1162, November.
    3. Li, Xinmin, 2009. "A generalized p-value approach for comparing the means of several log-normal populations," Statistics & Probability Letters, Elsevier, vol. 79(11), pages 1404-1408, June.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:82:y:2012:i:10:p:1755-1760. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.