IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v56y2012i5p1131-1149.html
   My bibliography  Save this article

Testing the equality of a large number of normal population means

Author

Listed:
  • Park, Junyong
  • Park, DoHwan

Abstract

It is challenging to consider the problem of testing the equality of normal population means when the number of populations is large compared to the sample sizes. In ANOVA with the assumption of homogeneous variance, the F-test is known as an exact test. When variances are heterogeneous, due to the complication, there are various tests with only approximate forms–either approximate chi-square or approximate F-test. Two types of tests are proposed with their asymptotic normality as the number of population increases. p-values from those tests are adjusted based on higher order asymptotics such as Edgeworth expansion so that the proposed tests can be considered even for moderate values of k. Numerical studies including simulations and real data examples are presented with comparison to existing tests.

Suggested Citation

  • Park, Junyong & Park, DoHwan, 2012. "Testing the equality of a large number of normal population means," Computational Statistics & Data Analysis, Elsevier, vol. 56(5), pages 1131-1149.
  • Handle: RePEc:eee:csdana:v:56:y:2012:i:5:p:1131-1149
    DOI: 10.1016/j.csda.2011.08.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947311003161
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Joachim Hartung & Dogan Argaç & Kepher Makambi, 2002. "Small sample properties of tests on homogeneity in one—way Anova and Meta—analysis," Statistical Papers, Springer, vol. 43(2), pages 197-235, April.
    2. Saha, Krishna K. & Bilisoly, Roger, 2009. "Testing the homogeneity of the means of several groups of count data in the presence of unequal dispersions," Computational Statistics & Data Analysis, Elsevier, vol. 53(9), pages 3305-3313, July.
    3. Tian, Lili, 2006. "Testing equality of inverse Gaussian means under heterogeneity, based on generalized test variable," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 1156-1162, November.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:56:y:2012:i:5:p:1131-1149. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/csda .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.