IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Testing the equality of a large number of normal population means

Listed author(s):
  • Park, Junyong
  • Park, DoHwan
Registered author(s):

    It is challenging to consider the problem of testing the equality of normal population means when the number of populations is large compared to the sample sizes. In ANOVA with the assumption of homogeneous variance, the F-test is known as an exact test. When variances are heterogeneous, due to the complication, there are various tests with only approximate forms–either approximate chi-square or approximate F-test. Two types of tests are proposed with their asymptotic normality as the number of population increases. p-values from those tests are adjusted based on higher order asymptotics such as Edgeworth expansion so that the proposed tests can be considered even for moderate values of k. Numerical studies including simulations and real data examples are presented with comparison to existing tests.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Computational Statistics & Data Analysis.

    Volume (Year): 56 (2012)
    Issue (Month): 5 ()
    Pages: 1131-1149

    in new window

    Handle: RePEc:eee:csdana:v:56:y:2012:i:5:p:1131-1149
    DOI: 10.1016/j.csda.2011.08.017
    Contact details of provider: Web page:

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    in new window

    1. Joachim Hartung & Dogan Argaç & Kepher Makambi, 2002. "Small sample properties of tests on homogeneity in one—way Anova and Meta—analysis," Statistical Papers, Springer, vol. 43(2), pages 197-235, April.
    2. Tian, Lili, 2006. "Testing equality of inverse Gaussian means under heterogeneity, based on generalized test variable," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 1156-1162, November.
    3. Saha, Krishna K. & Bilisoly, Roger, 2009. "Testing the homogeneity of the means of several groups of count data in the presence of unequal dispersions," Computational Statistics & Data Analysis, Elsevier, vol. 53(9), pages 3305-3313, July.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:56:y:2012:i:5:p:1131-1149. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.