IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v79y2009i7p965-968.html
   My bibliography  Save this article

Identification of a Markovian system with observations corrupted by a fractional Brownian motion

Author

Listed:
  • Mandrekar, V.
  • Naik-Nimbalkar, U.V.

Abstract

We examine the continuous time analogue of the work of [Shumway, R.H., Stoffer, D.S., 1982. An approach to time series smoothing and forecasting using EM algorithm. J. Time Ser. 3, 253-264] for state space models when the noise in the observation process is a fractional Brownian motion. We study the estimation problem for the parameter of the system process.

Suggested Citation

  • Mandrekar, V. & Naik-Nimbalkar, U.V., 2009. "Identification of a Markovian system with observations corrupted by a fractional Brownian motion," Statistics & Probability Letters, Elsevier, vol. 79(7), pages 965-968, April.
  • Handle: RePEc:eee:stapro:v:79:y:2009:i:7:p:965-968
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(08)00553-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. R. H. Shumway & D. S. Stoffer, 1982. "An Approach To Time Series Smoothing And Forecasting Using The Em Algorithm," Journal of Time Series Analysis, Wiley Blackwell, vol. 3(4), pages 253-264, July.
    2. Kallianpur, G. & Selukar, R. S., 1991. "Parameter estimation in linear filtering," Journal of Multivariate Analysis, Elsevier, vol. 39(2), pages 284-304, November.
    3. Le Breton, Alain, 1998. "Filtering and parameter estimation in a simple linear system driven by a fractional Brownian motion," Statistics & Probability Letters, Elsevier, vol. 38(3), pages 263-274, June.
    4. M.L. Kleptsyna & A. Le Breton & M.-C. Roubaud, 2000. "Parameter Estimation and Optimal Filtering for Fractional Type Stochastic Systems," Statistical Inference for Stochastic Processes, Springer, vol. 3(1), pages 173-182, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mazzocchi, Mario, 2006. "Time patterns in UK demand for alcohol and tobacco: an application of the EM algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 50(9), pages 2191-2205, May.
    2. Gapeev, Pavel V., 2004. "On arbitrage and Markovian short rates in fractional bond markets," Statistics & Probability Letters, Elsevier, vol. 70(3), pages 211-222, December.
    3. Tobias Hartl & Roland Jucknewitz, 2022. "Approximate state space modelling of unobserved fractional components," Econometric Reviews, Taylor & Francis Journals, vol. 41(1), pages 75-98, January.
    4. David de Antonio Liedo, 2014. "Nowcasting Belgium," Working Paper Research 256, National Bank of Belgium.
    5. Maroulas, Vasileios & Xiong, Jie, 2013. "Large deviations for optimal filtering with fractional Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 123(6), pages 2340-2352.
    6. Proietti, Tommaso, 2008. "Estimation of Common Factors under Cross-Sectional and Temporal Aggregation Constraints: Nowcasting Monthly GDP and its Main Components," MPRA Paper 6860, University Library of Munich, Germany.
    7. Matteo Barigozzi & Marc Hallin, 2023. "Dynamic Factor Models: a Genealogy," Papers 2310.17278, arXiv.org, revised Jan 2024.
    8. Alexander Tsyplakov, 2011. "An introduction to state space modeling (in Russian)," Quantile, Quantile, issue 9, pages 1-24, July.
    9. Hindrayanto, Irma & Koopman, Siem Jan & de Winter, Jasper, 2016. "Forecasting and nowcasting economic growth in the euro area using factor models," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1284-1305.
    10. Fulvio Corsi & Stefano Peluso & Francesco Audrino, 2015. "Missing in Asynchronicity: A Kalman‐em Approach for Multivariate Realized Covariance Estimation," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(3), pages 377-397, April.
    11. Lara Fontanella & Luigi Ippoliti, 2003. "Dynamic models for space-time prediction via Karhunen-Loève expansion," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 12(1), pages 61-78, February.
    12. Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," Working Papers 2019-4, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
    13. Tommaso Proietti & Alessandra Luati, 2013. "Maximum likelihood estimation of time series models: the Kalman filter and beyond," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 15, pages 334-362, Edward Elgar Publishing.
    14. Pawel Krolikowski & Kurt Graden Lunsford & Meifeng dup Yang, 2019. "Using Advance Layoff Notices as a Labor Market Indicator," Economic Commentary, Federal Reserve Bank of Cleveland, vol. 2019(21), December.
    15. Korobilis, Dimitris & Koop, Gary, 2018. "Variational Bayes inference in high-dimensional time-varying parameter models," Essex Finance Centre Working Papers 22665, University of Essex, Essex Business School.
    16. Yasutomo Murasawa & Roberto S. Mariano, 2004. "Constructing a Coincident Index of Business Cycles Without Assuming a One-Factor Model," Econometric Society 2004 Far Eastern Meetings 710, Econometric Society.
    17. Zhou, Xinquan & Bagnarosa, Guillaume & Gohin, Alexandre & Pennings, Joost M.E. & Debie, Philippe, 2023. "Microstructure and high-frequency price discovery in the soybean complex," Journal of Commodity Markets, Elsevier, vol. 30(C).
    18. Poncela, Pilar & Ruiz, Esther & Miranda, Karen, 2021. "Factor extraction using Kalman filter and smoothing: This is not just another survey," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1399-1425.
    19. Seiler, Christian & Heumann, Christian, 2013. "Microdata imputations and macrodata implications: Evidence from the Ifo Business Survey," Economic Modelling, Elsevier, vol. 35(C), pages 722-733.
    20. Fiorentini, Gabriele & Galesi, Alessandro & Sentana, Enrique, 2018. "A spectral EM algorithm for dynamic factor models," Journal of Econometrics, Elsevier, vol. 205(1), pages 249-279.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:79:y:2009:i:7:p:965-968. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.