IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v217y2025ics0167715224002633.html
   My bibliography  Save this article

Parameter estimation and hypothesis tests in logistic model for complex correlated data

Author

Listed:
  • Mou, Keyi
  • Li, Zhiming
  • Cheng, Jinlong

Abstract

Observations are frequently generated in clinical trials from correlated multiple organs (or parts) of individuals. The statistical inference is little about conducting regression analysis based on such data. This paper first develops a logistic regression for correlated multiple responses using a stable correlation binomial (SCB) model. Then, we obtain maximum likelihood estimators (MLEs) of unknown parameters through a fast quadratic lower bound (QLB) algorithm. Further, likelihood ratio, score and Wald statistics are used to test the effect of covariates based on the MLEs. Finally, the QLB algorithm and asymptotic tests are evaluated through simulations and applied to real dental data.

Suggested Citation

  • Mou, Keyi & Li, Zhiming & Cheng, Jinlong, 2025. "Parameter estimation and hypothesis tests in logistic model for complex correlated data," Statistics & Probability Letters, Elsevier, vol. 217(C).
  • Handle: RePEc:eee:stapro:v:217:y:2025:i:c:s0167715224002633
    DOI: 10.1016/j.spl.2024.110294
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715224002633
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2024.110294?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gary Witt, 2014. "A Simple Distribution for the Sum of Correlated, Exchangeable Binary Data," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 43(20), pages 4265-4280, October.
    2. Tian, Guo-Liang & Tang, Man-Lai & Liu, Chunling, 2012. "Accelerating the quadratic lower-bound algorithm via optimizing the shrinkage parameter," Computational Statistics & Data Analysis, Elsevier, vol. 56(2), pages 255-265.
    3. Jan Kalina & Patrik Janáček, 2023. "Testing exchangeability of multivariate distributions," Journal of Applied Statistics, Taylor & Francis Journals, vol. 50(15), pages 3142-3156, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cesa-Bianchi, Ambrogio & Eguren Martin, Fernando & Thwaites, Gregory, 2019. "Foreign booms, domestic busts: The global dimension of banking crises," Journal of Financial Intermediation, Elsevier, vol. 37(C), pages 58-74.
    2. Henry Penikas, 2023. "IRB Asset and Default Correlation: Rationale for the Macroprudential Mark-Ups to the IRB Risk-Weights," Risk Management, Palgrave Macmillan, vol. 25(1), pages 1-27, March.
    3. Henry Penikas, 2020. "IRB Asset and Default Correlation: Rationale for the Macroprudential Add-ons to the Risk-Weights," Bank of Russia Working Paper Series wps56, Bank of Russia.
    4. Dmitriy Borzykh & Henry Penikas, 2021. "IRB PD model accuracy validation in the presence of default correlation: a twin confidence interval approach," Risk Management, Palgrave Macmillan, vol. 23(4), pages 282-300, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:217:y:2025:i:c:s0167715224002633. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.