The sample ACF of a simple bilinear process
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Davis, Richard & Resnick, Sidney, 1985. "More limit theory for the sample correlation function of moving averages," Stochastic Processes and their Applications, Elsevier, vol. 20(2), pages 257-279, September.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Aknouche, Abdelhakim & Guerbyenne, Hafida, 2009. "Periodic stationarity of random coefficient periodic autoregressions," Statistics & Probability Letters, Elsevier, vol. 79(7), pages 990-996, April.
- Pereira, I. & Scotto, M.G., 2006. "On the non-negative first-order exponential bilinear time series model," Statistics & Probability Letters, Elsevier, vol. 76(9), pages 931-938, May.
- Shiqing Ling & Liang Peng & Fukang Zhu, 2015. "Inference For A Special Bilinear Time-Series Model," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(1), pages 61-66, January.
- Sakineh Ramezani & Mehrnaz Mohammadpour, 2022. "Integer-valued Bilinear Model with Dependent Counting Series," Methodology and Computing in Applied Probability, Springer, vol. 24(1), pages 321-343, March.
- Abdelhakim Aknouche & Nadia Rabehi, 2010. "On an independent and identically distributed mixture bilinear time‐series model," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(2), pages 113-131, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jonathan B. Hill, 2004. "Strong Orthogonal Decompositions and Non-Linear Impulse Response Functions for Infinite Variance Processes," Econometrics 0401001, University Library of Munich, Germany, revised 16 Dec 2005.
- Peter C.B. Phillips & Mico Loretan, 1990. "Testing Covariance Stationarity Under Moment Condition Failure with an Application to Common Stock Returns," Cowles Foundation Discussion Papers 947, Cowles Foundation for Research in Economics, Yale University.
- Kim, Mihyun & Kokoszka, Piotr, 2022. "Extremal dependence measure for functional data," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
- Yuya Sasaki & Yulong Wang, 2020. "Testing Finite Moment Conditions for the Consistency and the Root-N Asymptotic Normality of the GMM and M Estimators," Papers 2006.02541, arXiv.org, revised Sep 2020.
- Sai-Hua Huang & Tian-Xiao Pang & Chengguo Weng, 2014. "Limit Theory for Moderate Deviations from a Unit Root Under Innovations with a Possibly Infinite Variance," Methodology and Computing in Applied Probability, Springer, vol. 16(1), pages 187-206, March.
- Akashi, Fumiya & Taniguchi, Masanobu & Monti, Anna Clara, 2020. "Robust causality test of infinite variance processes," Journal of Econometrics, Elsevier, vol. 216(1), pages 235-245.
- W. K. Li & Shiqing Ling & Michael McAleer, 2001. "A Survey of Recent Theoretical Results for Time Series Models with GARCH Errors," ISER Discussion Paper 0545, Institute of Social and Economic Research, Osaka University.
- Kokoszka, Piotr S. & Taqqu, Murad S., 1995. "Fractional ARIMA with stable innovations," Stochastic Processes and their Applications, Elsevier, vol. 60(1), pages 19-47, November.
- Barczy, Mátyás & Basrak, Bojan & Kevei, Péter & Pap, Gyula & Planinić, Hrvoje, 2021. "Statistical inference of subcritical strongly stationary Galton–Watson processes with regularly varying immigration," Stochastic Processes and their Applications, Elsevier, vol. 132(C), pages 33-75.
- Bouhaddioui, Chafik & Ghoudi, Kilani, 2012. "Empirical processes for infinite variance autoregressive models," Journal of Multivariate Analysis, Elsevier, vol. 107(C), pages 319-335.
- Phillips, Peter C. B. & Loretan, Mico, 1991.
"The Durbin-Watson ratio under infinite-variance errors,"
Journal of Econometrics, Elsevier, vol. 47(1), pages 85-114, January.
- Peter C.B. Phillips & Mico Loretan, 1989. "The Durbin-Watson Ratio Under Infinite Variance Errors," Cowles Foundation Discussion Papers 898R, Cowles Foundation for Research in Economics, Yale University, revised Aug 1989.
- Amit Shelef & Edna Schechtman, 2019. "A Gini-based time series analysis and test for reversibility," Statistical Papers, Springer, vol. 60(3), pages 687-716, June.
- Andrews, Beth & Davis, Richard A., 2013. "Model identification for infinite variance autoregressive processes," Journal of Econometrics, Elsevier, vol. 172(2), pages 222-234.
- Marcel Carcea & Robert Serfling, 2015. "A Gini Autocovariance Function for Time Series Modelling," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(6), pages 817-838, November.
More about this item
Keywords
Sample autocorrelation Sample autocovariance Heavy tails Infinite variance Stable distribution Convergence of point processes Mixing condition Stochastic recurrence equation Bilinear process;Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:83:y:1999:i:1:p:1-14. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.