IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v186y2025ics0304414925000791.html
   My bibliography  Save this article

Harmonizable Multifractional Stable Field: Sharp results on sample path behavior

Author

Listed:
  • Ayache, Antoine
  • Louckx, Christophe

Abstract

For about three decades now, there is an increasing interest in study of multifractional processes/fields. The paradigmatic example of them is Multifractional Brownian Field (MBF) over RN, which is a Gaussian generalization with varying Hurst parameter (the Hurst function) of the well-known Fractional Brownian Motion (FBM). Harmonizable Multifractional Stable Field (HMSF) is a very natural (and maybe the most natural) extension of MBF to the framework of heavy-tailed Symmetric α-Stable (SαS) distributions. Many methods related with Gaussian fields fail to work in such a non-Gaussian framework, this is what makes study of HMSF to be difficult. In our article we construct wavelet type random series representations for the SαS stochastic field generating HMSF and for related fields. Then, under weakened versions of the usual Hölder condition on the Hurst function, we obtain sharp results on sample path behavior of HMSF: optimal global and pointwise moduli of continuity, quasi-optimal pointwise modulus of continuity on a universal event of probability 1 not depending on the location, and an estimate of the behavior at infinity which is optimal when the Hurst function has a limit at infinity to which it converges at a logarithmic rate.

Suggested Citation

  • Ayache, Antoine & Louckx, Christophe, 2025. "Harmonizable Multifractional Stable Field: Sharp results on sample path behavior," Stochastic Processes and their Applications, Elsevier, vol. 186(C).
  • Handle: RePEc:eee:spapps:v:186:y:2025:i:c:s0304414925000791
    DOI: 10.1016/j.spa.2025.104638
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414925000791
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2025.104638?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. S. Bianchi & A. Pantanella & A. Pianese, 2013. "Modeling stock prices by multifractional Brownian motion: an improved estimation of the pointwise regularity," Quantitative Finance, Taylor & Francis Journals, vol. 13(8), pages 1317-1330, July.
    2. K. J. Falconer & J. Lévy Véhel, 2009. "Multifractional, Multistable, and Other Processes with Prescribed Local Form," Journal of Theoretical Probability, Springer, vol. 22(2), pages 375-401, June.
    3. Sergio Bianchi & Augusto Pianese, 2014. "Multifractional processes in finance," Risk and Decision Analysis, IOS Press, issue 5, pages 1-22.
    4. Antoine Ayache & Geoffrey Boutard, 2017. "Stationary Increments Harmonizable Stable Fields: Upper Estimates on Path Behaviour," Journal of Theoretical Probability, Springer, vol. 30(4), pages 1369-1423, December.
    5. Loboda, Dennis & Mies, Fabian & Steland, Ansgar, 2021. "Regularity of multifractional moving average processes with random Hurst exponent," Stochastic Processes and their Applications, Elsevier, vol. 140(C), pages 21-48.
    6. Biermé, Hermine & Lacaux, Céline & Scheffler, Hans-Peter, 2011. "Multi-operator scaling random fields," Stochastic Processes and their Applications, Elsevier, vol. 121(11), pages 2642-2677, November.
    7. Biermé, Hermine & Lacaux, Céline, 2009. "Hölder regularity for operator scaling stable random fields," Stochastic Processes and their Applications, Elsevier, vol. 119(7), pages 2222-2248, July.
    8. Dozzi, Marco & Shevchenko, Georgiy, 2011. "Real harmonizable multifractional stable process and its local properties," Stochastic Processes and their Applications, Elsevier, vol. 121(7), pages 1509-1523, July.
    9. Ayache, Antoine & Xiao, Yimin, 2016. "Harmonizable fractional stable fields: Local nondeterminism and joint continuity of the local times," Stochastic Processes and their Applications, Elsevier, vol. 126(1), pages 171-185.
    10. Surgailis, Donatas, 2008. "Nonhomogeneous fractional integration and multifractional processes," Stochastic Processes and their Applications, Elsevier, vol. 118(2), pages 171-198, February.
    11. Stoev, Stilian A. & Taqqu, Murad S., 2006. "How rich is the class of multifractional Brownian motions?," Stochastic Processes and their Applications, Elsevier, vol. 116(2), pages 200-221, February.
    12. Cambanis, Stamatis & Maejima, Makoto, 1989. "Two classes of self-similar stable processes with stationary increments," Stochastic Processes and their Applications, Elsevier, vol. 32(2), pages 305-329, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Baudoin, Fabrice & Lacaux, Céline, 2024. "Fractional stable random fields on the Sierpiński gasket," Stochastic Processes and their Applications, Elsevier, vol. 178(C).
    2. Ayache, Antoine & Bouly, Florent, 2022. "Moving average Multifractional Processes with Random Exponent: Lower bounds for local oscillations," Stochastic Processes and their Applications, Elsevier, vol. 146(C), pages 143-163.
    3. Bardet, Jean-Marc & Surgailis, Donatas, 2013. "Nonparametric estimation of the local Hurst function of multifractional Gaussian processes," Stochastic Processes and their Applications, Elsevier, vol. 123(3), pages 1004-1045.
    4. Loboda, Dennis & Mies, Fabian & Steland, Ansgar, 2021. "Regularity of multifractional moving average processes with random Hurst exponent," Stochastic Processes and their Applications, Elsevier, vol. 140(C), pages 21-48.
    5. Bianchi, Sergio & Pianese, Augusto, 2018. "Time-varying Hurst–Hölder exponents and the dynamics of (in)efficiency in stock markets," Chaos, Solitons & Fractals, Elsevier, vol. 109(C), pages 64-75.
    6. Angelini, Daniele & Bianchi, Sergio, 2023. "Nonlinear biases in the roughness of a Fractional Stochastic Regularity Model," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    7. Sergio Bianchi & Augusto Pianese & Massimiliano Frezza, 2020. "A distribution‐based method to gauge market liquidity through scale invariance between investment horizons," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 36(5), pages 809-824, September.
    8. Peng, Qidi & Zhao, Ran, 2018. "A general class of multifractional processes and stock price informativeness," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 248-267.
    9. Massimiliano Frezza & Sergio Bianchi & Augusto Pianese, 2022. "Forecasting Value-at-Risk in turbulent stock markets via the local regularity of the price process," Computational Management Science, Springer, vol. 19(1), pages 99-132, January.
    10. Sergio Bianchi & Massimiliano Frezza, 2018. "Liquidity, Efficiency and the 2007-2008 Global Financial Crisis," Annals of Economics and Finance, Society for AEF, vol. 19(2), pages 375-404, November.
    11. Noemi Nava & Tiziana Di Matteo & Tomaso Aste, 2015. "Time-dependent scaling patterns in high frequency financial data," Papers 1508.07428, arXiv.org, revised Dec 2015.
    12. Aloy Marcel & Dufrénot Gilles & Tong Charles Lai & Peguin-Feissolle Anne, 2013. "A smooth transition long-memory model," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 17(3), pages 281-296, May.
    13. Tsai, Yi-Cheng & Lei, Chin-Laung & Cheung, William & Wu, Chung-Shu & Ho, Jan-Ming & Wang, Chuan-Ju, 2018. "Exploring the Persistent Behavior of Financial Markets," Finance Research Letters, Elsevier, vol. 24(C), pages 199-220.
    14. Gerlich, Nikolas & Rostek, Stefan, 2015. "Estimating serial correlation and self-similarity in financial time series—A diversification approach with applications to high frequency data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 434(C), pages 84-98.
    15. Loosveldt, L., 2023. "Multifractional Hermite processes: Definition and first properties," Stochastic Processes and their Applications, Elsevier, vol. 165(C), pages 465-500.
    16. Christian Bender & Joachim Lebovits & Jacques Lévy Véhel, 2024. "General Transfer Formula for Stochastic Integral with Respect to Multifractional Brownian Motion," Journal of Theoretical Probability, Springer, vol. 37(1), pages 905-932, March.
    17. Balança, Paul & Herbin, Erick, 2012. "2-microlocal analysis of martingales and stochastic integrals," Stochastic Processes and their Applications, Elsevier, vol. 122(6), pages 2346-2382.
    18. Panigrahi, Snigdha & Roy, Parthanil & Xiao, Yimin, 2021. "Maximal moments and uniform modulus of continuity for stable random fields," Stochastic Processes and their Applications, Elsevier, vol. 136(C), pages 92-124.
    19. Britta Förster & Bernd Hayo, 2018. "Monetary and Fiscal Policy in Times of Crisis: A New Keynesian Perspective in Continuous Time," Manchester School, University of Manchester, vol. 86(1), pages 21-48, January.
    20. Zhang, H.S. & Shen, X.Y. & Huang, J.P., 2016. "Pattern of trends in stock markets as revealed by the renormalization method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 456(C), pages 340-346.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:186:y:2025:i:c:s0304414925000791. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.