IDEAS home Printed from
   My bibliography  Save this article

Multi-operator scaling random fields


  • Biermé, Hermine
  • Lacaux, Céline
  • Scheffler, Hans-Peter


In this paper, we define and study a new class of random fields called harmonizable multi-operator scaling stable random fields. These fields satisfy a local asymptotic operator scaling property which generalizes both the local asymptotic self-similarity property and the operator scaling property. Actually, they locally look like operator scaling random fields, whose order is allowed to vary along the sample paths. We also give an upper bound of their modulus of continuity. Their pointwise Hölder exponents may also vary with the position x and their anisotropic behavior is driven by a matrix which may also depend on x .

Suggested Citation

  • Biermé, Hermine & Lacaux, Céline & Scheffler, Hans-Peter, 2011. "Multi-operator scaling random fields," Stochastic Processes and their Applications, Elsevier, vol. 121(11), pages 2642-2677, November.
  • Handle: RePEc:eee:spapps:v:121:y:2011:i:11:p:2642-2677

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Biermé, Hermine & Meerschaert, Mark M. & Scheffler, Hans-Peter, 2007. "Operator scaling stable random fields," Stochastic Processes and their Applications, Elsevier, vol. 117(3), pages 312-332, March.
    2. Antoine Ayache & Jacques Vehel, 2000. "The Generalized Multifractional Brownian Motion," Statistical Inference for Stochastic Processes, Springer, vol. 3(1), pages 7-18, January.
    3. Biermé, Hermine & Lacaux, Céline, 2009. "Hölder regularity for operator scaling stable random fields," Stochastic Processes and their Applications, Elsevier, vol. 119(7), pages 2222-2248, July.
    4. Herbin, Erick & Lévy-Véhel, Jacques, 2009. "Stochastic 2-microlocal analysis," Stochastic Processes and their Applications, Elsevier, vol. 119(7), pages 2277-2311, July.
    5. Benassi, Albert & Cohen, Serge & Istas, Jacques & Jaffard, Stéphane, 1998. "Identification of filtered white noises," Stochastic Processes and their Applications, Elsevier, vol. 75(1), pages 31-49, June.
    Full references (including those not matched with items on IDEAS)


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:121:y:2011:i:11:p:2642-2677. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.