IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v182y2025ics0304414925000109.html
   My bibliography  Save this article

Exact asymptotics of ruin probabilities with linear Hawkes arrivals

Author

Listed:
  • Palmowski, Zbigniew
  • Pojer, Simon
  • Thonhauser, Stefan

Abstract

In this contribution we consider a risk process whose arrivals are driven by a linear marked Hawkes process. Using an appropriate change of measure and a generalized renewal theorem, we are able to derive the exact asymptotics of the process’s ruin probability in the case of light-tailed claims. On the other hand, we can exploit the principle of one large jump to derive the analogous result in the heavy-tailed situation. Furthermore, we derive several intermediate results like the Harris recurrence of the Hawkes intensity process which are of their own interest.

Suggested Citation

  • Palmowski, Zbigniew & Pojer, Simon & Thonhauser, Stefan, 2025. "Exact asymptotics of ruin probabilities with linear Hawkes arrivals," Stochastic Processes and their Applications, Elsevier, vol. 182(C).
  • Handle: RePEc:eee:spapps:v:182:y:2025:i:c:s0304414925000109
    DOI: 10.1016/j.spa.2025.104571
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414925000109
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2025.104571?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gabriele Stabile & Giovanni Luca Torrisi, 2010. "Risk Processes with Non-stationary Hawkes Claims Arrivals," Methodology and Computing in Applied Probability, Springer, vol. 12(3), pages 415-429, September.
    2. Zhu, Lingjiong, 2013. "Ruin probabilities for risk processes with non-stationary arrivals and subexponential claims," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 544-550.
    3. Bessy-Roland, Yannick & Boumezoued, Alexandre & Hillairet, Caroline, 2021. "Multivariate Hawkes process for cyber insurance," Annals of Actuarial Science, Cambridge University Press, vol. 15(1), pages 14-39, March.
    4. Hansjörg Albrecher & Søren Asmussen c, 2006. "Ruin probabilities and aggregrate claims distributions for shot noise Cox processes," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2006(2), pages 86-110.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ulrich Horst & Wei Xu, 2024. "Functional Limit Theorems for Hawkes Processes," Papers 2401.11495, arXiv.org, revised Dec 2024.
    2. Swishchuk, Anatoliy & Zagst, Rudi & Zeller, Gabriela, 2021. "Hawkes processes in insurance: Risk model, application to empirical data and optimal investment," Insurance: Mathematics and Economics, Elsevier, vol. 101(PA), pages 107-124.
    3. Lingjiong Zhu, 2015. "A State-Dependent Dual Risk Model," Papers 1510.03920, arXiv.org, revised Feb 2023.
    4. Roueff, François & von Sachs, Rainer & Sansonnet, Laure, 2016. "Locally stationary Hawkes processes," Stochastic Processes and their Applications, Elsevier, vol. 126(6), pages 1710-1743.
    5. Dassios, Angelos & Jang, Jiwook & Zhao, Hongbiao, 2019. "A generalised CIR process with externally-exciting and self-exciting jumps and its applications in insurance and finance," LSE Research Online Documents on Economics 102043, London School of Economics and Political Science, LSE Library.
    6. Ulrich Horst & Wei Xu, 2019. "Functional Limit Theorems for Marked Hawkes Point Measures ," Working Papers hal-02443841, HAL.
    7. Zailei Cheng & Youngsoo Seol, 2018. "Gaussian Approximation of a Risk Model with Non-Stationary Hawkes Arrivals of Claims," Papers 1801.07595, arXiv.org, revised Aug 2019.
    8. Behzad Mehrdad & Lingjiong Zhu, 2014. "On the Hawkes Process with Different Exciting Functions," Papers 1403.0994, arXiv.org, revised Sep 2017.
    9. Hainaut, Donatien, 2016. "A bivariate Hawkes process for interest rate modeling," Economic Modelling, Elsevier, vol. 57(C), pages 180-196.
    10. Horst, Ulrich & Xu, Wei, 2021. "Functional limit theorems for marked Hawkes point measures," Stochastic Processes and their Applications, Elsevier, vol. 134(C), pages 94-131.
    11. Hyunjoo Yoo & Bara Kim & Jeongsim Kim & Jiwook Jang, 2020. "Transform approach for discounted aggregate claims in a risk model with descendant claims," Annals of Operations Research, Springer, vol. 293(1), pages 175-192, October.
    12. Dassios, Angelos & Zhao, Hongbiao, 2017. "A generalised contagion process with an application to credit risk," LSE Research Online Documents on Economics 68558, London School of Economics and Political Science, LSE Library.
    13. Dassios, Angelos & Jang, Jiwook & Zhao, Hongbiao, 2015. "A risk model with renewal shot-noise Cox process," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 55-65.
    14. Braunsteins, Peter & Mandjes, Michel, 2023. "The Cramér-Lundberg model with a fluctuating number of clients," Insurance: Mathematics and Economics, Elsevier, vol. 112(C), pages 1-22.
    15. Mercuri, Lorenzo & Perchiazzo, Andrea & Rroji, Edit, 2024. "A Hawkes model with CARMA(p,q) intensity," Insurance: Mathematics and Economics, Elsevier, vol. 116(C), pages 1-26.
    16. Liu, Wenyue & Cadenillas, Abel, 2023. "Optimal insurance contracts for a shot-noise Cox claim process and persistent insured's actions," Insurance: Mathematics and Economics, Elsevier, vol. 109(C), pages 69-93.
    17. Nian Yao, 2018. "Optimal leverage ratio estimate of various models for leveraged ETFs to exceed a target: Probability estimates of large deviations," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 5(02), pages 1-37, June.
    18. Angelos Dassios & Hongbiao Zhao, 2017. "A Generalized Contagion Process With An Application To Credit Risk," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(01), pages 1-33, February.
    19. Badescu, Andrei L. & Lin, X. Sheldon & Tang, Dameng, 2016. "A marked Cox model for the number of IBNR claims: Theory," Insurance: Mathematics and Economics, Elsevier, vol. 69(C), pages 29-37.
    20. Anatoliy Swishchuk, 2017. "Risk Model Based on General Compound Hawkes Process," Papers 1706.09038, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:182:y:2025:i:c:s0304414925000109. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.