IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v53y2013i3p544-550.html
   My bibliography  Save this article

Ruin probabilities for risk processes with non-stationary arrivals and subexponential claims

Author

Listed:
  • Zhu, Lingjiong

Abstract

In this paper, we obtain the finite-horizon and infinite-horizon ruin probability asymptotics for risk processes with claims of subexponential tails for non-stationary arrival processes that satisfy a large deviation principle. As a result, the arrival process can be dependent, non-stationary and non-renewal. We give three examples of non-stationary and non-renewal point processes: Hawkes process, Cox process with shot noise intensity and self-correcting point process. We also show some aggregate claims results for these three examples.

Suggested Citation

  • Zhu, Lingjiong, 2013. "Ruin probabilities for risk processes with non-stationary arrivals and subexponential claims," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 544-550.
  • Handle: RePEc:eee:insuma:v:53:y:2013:i:3:p:544-550
    DOI: 10.1016/j.insmatheco.2013.08.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668713001194
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Veraverbeke, N., 1977. "Asymptotic behaviour of Wiener-Hopf factors of a random walk," Stochastic Processes and their Applications, Elsevier, vol. 5(1), pages 27-37, February.
    2. Schlegel, Sabine, 1998. "Ruin probabilities in perturbed risk models," Insurance: Mathematics and Economics, Elsevier, vol. 22(1), pages 93-104, May.
    3. Asmussen, Søren & Klüppelberg, Claudia, 1996. "Large deviations results for subexponential tails, with applications to insurance risk," Stochastic Processes and their Applications, Elsevier, vol. 64(1), pages 103-125, November.
    4. ., 1998. "Models," Chapters,in: The Handbook of Economic Methodology, chapter 74 Edward Elgar Publishing.
    5. Xiaogu, Zheng, 1991. "Ergodic theorems for stress release processes," Stochastic Processes and their Applications, Elsevier, vol. 37(2), pages 239-258, April.
    6. Isham, Valerie & Westcott, Mark, 1979. "A self-correcting point process," Stochastic Processes and their Applications, Elsevier, vol. 8(3), pages 335-347, May.
    7. Embrechts, P. & Veraverbeke, N., 1982. "Estimates for the probability of ruin with special emphasis on the possibility of large claims," Insurance: Mathematics and Economics, Elsevier, vol. 1(1), pages 55-72, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:eee:stapro:v:127:y:2017:i:c:p:165-172 is not listed on IDEAS
    2. Lingjiong Zhu, 2015. "A State-Dependent Dual Risk Model," Papers 1510.03920, arXiv.org.
    3. Zailei Cheng & Youngsoo Seol, 2018. "Gaussian Approximation of a Risk Model with Non-Stationary Hawkes Arrivals of Claims," Papers 1801.07595, arXiv.org, revised Aug 2019.
    4. Dassios, Angelos & Jang, Jiwook & Zhao, Hongbiao, 2015. "A risk model with renewal shot-noise Cox process," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 55-65.
    5. Dassios, Angelos & Jang, Jiwook & Zhao, Hongbiao, 2015. "A risk model with renewal shot-noise Cox process," LSE Research Online Documents on Economics 64051, London School of Economics and Political Science, LSE Library.
    6. Dassios, Angelos & Zhao, Hongbiao, 2017. "A generalised contagion process with an application to credit risk," LSE Research Online Documents on Economics 68558, London School of Economics and Political Science, LSE Library.
    7. repec:wsi:ijfexx:v:05:y:2018:i:02:n:s2424786318500160 is not listed on IDEAS
    8. Behzad Mehrdad & Lingjiong Zhu, 2014. "On the Hawkes Process with Different Exciting Functions," Papers 1403.0994, arXiv.org, revised Sep 2017.
    9. Seol, Youngsoo, 2015. "Limit theorems for discrete Hawkes processes," Statistics & Probability Letters, Elsevier, vol. 99(C), pages 223-229.
    10. Hainaut, Donatien, 2016. "A bivariate Hawkes process for interest rate modeling," Economic Modelling, Elsevier, vol. 57(C), pages 180-196.
    11. Roueff, François & von Sachs, Rainer & Sansonnet, Laure, 2016. "Locally stationary Hawkes processes," Stochastic Processes and their Applications, Elsevier, vol. 126(6), pages 1710-1743.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:53:y:2013:i:3:p:544-550. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.