Ruin probabilities for risk processes with non-stationary arrivals and subexponential claims
Author
Abstract
Suggested Citation
DOI: 10.1016/j.insmatheco.2013.08.008
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Veraverbeke, N., 1977. "Asymptotic behaviour of Wiener-Hopf factors of a random walk," Stochastic Processes and their Applications, Elsevier, vol. 5(1), pages 27-37, February.
- Schlegel, Sabine, 1998. "Ruin probabilities in perturbed risk models," Insurance: Mathematics and Economics, Elsevier, vol. 22(1), pages 93-104, May.
- Asmussen, Søren & Klüppelberg, Claudia, 1996. "Large deviations results for subexponential tails, with applications to insurance risk," Stochastic Processes and their Applications, Elsevier, vol. 64(1), pages 103-125, November.
- ., 1998. "Models," Chapters, in: John B. Davis & D. W. Hands & Uskali Mäki (ed.), The Handbook of Economic Methodology, chapter 74, Edward Elgar Publishing.
- Xiaogu, Zheng, 1991. "Ergodic theorems for stress release processes," Stochastic Processes and their Applications, Elsevier, vol. 37(2), pages 239-258, April.
- Isham, Valerie & Westcott, Mark, 1979. "A self-correcting point process," Stochastic Processes and their Applications, Elsevier, vol. 8(3), pages 335-347, May.
- Gabriele Stabile & Giovanni Luca Torrisi, 2010. "Risk Processes with Non-stationary Hawkes Claims Arrivals," Methodology and Computing in Applied Probability, Springer, vol. 12(3), pages 415-429, September.
- Embrechts, P. & Veraverbeke, N., 1982. "Estimates for the probability of ruin with special emphasis on the possibility of large claims," Insurance: Mathematics and Economics, Elsevier, vol. 1(1), pages 55-72, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Grandell, Jan, 2000. "Simple approximations of ruin probabilities," Insurance: Mathematics and Economics, Elsevier, vol. 26(2-3), pages 157-173, May.
- Julien Trufin & Stéphane Loisel, 2013. "Ultimate ruin probability in discrete time with Bühlmann credibility premium adjustments," Post-Print hal-00426790, HAL.
- Tang, Qihe & Wei, Li, 2010. "Asymptotic aspects of the Gerber-Shiu function in the renewal risk model using Wiener-Hopf factorization and convolution equivalence," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 19-31, February.
- M. S. Sgibnev, 1998. "On the Asymptotic Behavior of the Harmonic Renewal Measure," Journal of Theoretical Probability, Springer, vol. 11(2), pages 371-382, April.
- Søren Asmussen & Serguei Foss & Dmitry Korshunov, 2003. "Asymptotics for Sums of Random Variables with Local Subexponential Behaviour," Journal of Theoretical Probability, Springer, vol. 16(2), pages 489-518, April.
- Asmussen, Søren & Klüppelberg, Claudia, 1996. "Large deviations results for subexponential tails, with applications to insurance risk," Stochastic Processes and their Applications, Elsevier, vol. 64(1), pages 103-125, November.
- Kamphorst, Bart & Zwart, Bert, 2019. "Uniform asymptotics for compound Poisson processes with regularly varying jumps and vanishing drift," Stochastic Processes and their Applications, Elsevier, vol. 129(2), pages 572-603.
- Tang, Qihe & Tsitsiashvili, Gurami, 2003. "Precise estimates for the ruin probability in finite horizon in a discrete-time model with heavy-tailed insurance and financial risks," Stochastic Processes and their Applications, Elsevier, vol. 108(2), pages 299-325, December.
- Lin, Jianxi, 2012. "Second order asymptotics for ruin probabilities in a renewal risk model with heavy-tailed claims," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 422-429.
- Cheng, Yebin & Tang, Qihe & Yang, Hailiang, 2002. "Approximations for moments of deficit at ruin with exponential and subexponential claims," Statistics & Probability Letters, Elsevier, vol. 59(4), pages 367-378, October.
- Tang, Qihe, 2007. "The overshoot of a random walk with negative drift," Statistics & Probability Letters, Elsevier, vol. 77(2), pages 158-165, January.
- Korshunov, D., 1997. "On distribution tail of the maximum of a random walk," Stochastic Processes and their Applications, Elsevier, vol. 72(1), pages 97-103, December.
- Serguei Foss & Takis Konstantopoulos & Stan Zachary, 2007. "Discrete and Continuous Time Modulated Random Walks with Heavy-Tailed Increments," Journal of Theoretical Probability, Springer, vol. 20(3), pages 581-612, September.
- Hägele, Miriam, 2020. "Precise asymptotics of ruin probabilities for a class of multivariate heavy-tailed distributions," Statistics & Probability Letters, Elsevier, vol. 166(C).
- Wang, Kaiyong & Yang, Yang & Yu, Changjun, 2013. "Estimates for the overshoot of a random walk with negative drift and non-convolution equivalent increments," Statistics & Probability Letters, Elsevier, vol. 83(6), pages 1504-1512.
- Furrer, Hansjorg & Michna, Zbigniew & Weron, Aleksander, 1997. "Stable Lévy motion approximation in collective risk theory," Insurance: Mathematics and Economics, Elsevier, vol. 20(2), pages 97-114, September.
- Serguei Foss & Andrew Richards, 2010. "On Sums of Conditionally Independent Subexponential Random Variables," Mathematics of Operations Research, INFORMS, vol. 35(1), pages 102-119, February.
- Scalas, Enrico & Kaizoji, Taisei & Kirchler, Michael & Huber, Jürgen & Tedeschi, Alessandra, 2006.
"Waiting times between orders and trades in double-auction markets,"
Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 366(C), pages 463-471.
- Enrico Scalas & Taisei Kaizoji & Michael Kirchler & Juergen Huber & Alessandra Tedeschi, 2006. "Waiting times between orders and trades in double-auction markets," Papers physics/0608273, arXiv.org.
- S. Pitts, 1994. "Nonparametric estimation of compound distributions with applications in insurance," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 46(3), pages 537-555, September.
- Dutang, C. & Lefèvre, C. & Loisel, S., 2013.
"On an asymptotic rule A+B/u for ultimate ruin probabilities under dependence by mixing,"
Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 774-785.
- Christophe Dutang & C. Lefevre & S. Loisel, 2013. "On an asymptotic rule A+B/u for ultimate ruin probabilities under dependence by mixing," Post-Print hal-01616175, HAL.
- Christophe Dutang & Claude Lefèvre & Stéphane Loisel, 2013. "On an asymptotic rule A+B/u for ultimate ruin probabilities under dependence by mixing," Post-Print hal-00746251, HAL.
More about this item
Keywords
Risk processes; Ruin probabilities; Subexponential distributions; Non-stationary processes; Hawkes processes; Shot noise processes; Self-correcting point processes;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:53:y:2013:i:3:p:544-550. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.