IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v182y2025ics0304414924002631.html

On the saddle point of a zero-sum stopper vs. singular-controller game

Author

Listed:
  • Bovo, Andrea
  • De Angelis, Tiziano

Abstract

We construct a saddle point in a class of zero-sum games between a stopper and a singular-controller. The underlying dynamics is a one-dimensional, time-homogeneous, singularly controlled diffusion taking values either on R or on [0,∞). The games are set on a finite-time horizon, thus leading to analytical problems in the form of parabolic variational inequalities with gradient and obstacle constraints.

Suggested Citation

  • Bovo, Andrea & De Angelis, Tiziano, 2025. "On the saddle point of a zero-sum stopper vs. singular-controller game," Stochastic Processes and their Applications, Elsevier, vol. 182(C).
  • Handle: RePEc:eee:spapps:v:182:y:2025:i:c:s0304414924002631
    DOI: 10.1016/j.spa.2024.104555
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414924002631
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2024.104555?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Damien Lamberton & Mohammed Mikou, 2008. "The critical price for the American put in an exponential Lévy model," Finance and Stochastics, Springer, vol. 12(4), pages 561-581, October.
    2. Boetius, Frederik & Kohlmann, Michael, 1998. "Connections between optimal stopping and singular stochastic control," Stochastic Processes and their Applications, Elsevier, vol. 77(2), pages 253-281, September.
    3. Andrea Bovo & Tiziano De Angelis & Jan Palczewski, 2023. "Stopper vs. singular-controller games with degenerate diffusions," Papers 2312.00613, arXiv.org, revised Jul 2024.
    4. Andrea Bovo & Tiziano De Angelis & Jan Palczewski, 2023. "Zero-sum stopper vs. singular-controller games with constrained control directions," Papers 2306.05113, arXiv.org, revised Feb 2024.
    5. Radner, Roy & Shepp, Larry, 1996. "Risk vs. profit potential: A model for corporate strategy," Journal of Economic Dynamics and Control, Elsevier, vol. 20(8), pages 1373-1393, August.
    6. Burdzy, Krzysztof & Kang, Weining & Ramanan, Kavita, 2009. "The Skorokhod problem in a time-dependent interval," Stochastic Processes and their Applications, Elsevier, vol. 119(2), pages 428-452, February.
    7. Hernández-Hernández, Daniel & Yamazaki, Kazutoshi, 2015. "Games of singular control and stopping driven by spectrally one-sided Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 125(1), pages 1-38.
    8. Erhan Bayraktar & Yu-Jui Huang, 2010. "On the Multi-Dimensional Controller and Stopper Games," Papers 1009.0932, arXiv.org, revised Jan 2013.
    9. Tiziano De Angelis & Erik Ekstrom, 2016. "The dividend problem with a finite horizon," Papers 1609.01655, arXiv.org, revised Nov 2017.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tiziano De Angelis, 2018. "Optimal dividends with partial information and stopping of a degenerate reflecting diffusion," Papers 1805.12035, arXiv.org, revised Mar 2019.
    2. Tiziano Angelis, 2020. "Optimal dividends with partial information and stopping of a degenerate reflecting diffusion," Finance and Stochastics, Springer, vol. 24(1), pages 71-123, January.
    3. de Angelis, Tiziano & Ferrari, Giorgio, 2014. "A Stochastic Reversible Investment Problem on a Finite-Time Horizon: Free Boundary Analysis," Center for Mathematical Economics Working Papers 477, Center for Mathematical Economics, Bielefeld University.
    4. De Angelis, Tiziano & Ferrari, Giorgio, 2014. "A stochastic partially reversible investment problem on a finite time-horizon: Free-boundary analysis," Stochastic Processes and their Applications, Elsevier, vol. 124(12), pages 4080-4119.
    5. Dianetti, Jodi & Ferrari, Giorgio, 2021. "Multidimensional Singular Control and Related Skorokhod Problem: Suficient Conditions for the Characterization of Optimal Controls," Center for Mathematical Economics Working Papers 645, Center for Mathematical Economics, Bielefeld University.
    6. Giorgio Ferrari & Neofytos Rodosthenous, 2025. "On the Singular Control of a Diffusion and Its Running Infimum or Supremum," Papers 2501.17577, arXiv.org.
    7. Ernst, Philip A. & Imerman, Michael B. & Shepp, Larry & Zhou, Quan, 2022. "Fiscal stimulus as an optimal control problem," Stochastic Processes and their Applications, Elsevier, vol. 150(C), pages 1091-1108.
    8. Dianetti, Jodi & Ferrari, Giorgio, 2023. "Multidimensional singular control and related Skorokhod problem: Sufficient conditions for the characterization of optimal controls," Stochastic Processes and their Applications, Elsevier, vol. 162(C), pages 547-592.
    9. Tiziano De Angelis & Erik Ekstrom, 2016. "The dividend problem with a finite horizon," Papers 1609.01655, arXiv.org, revised Nov 2017.
    10. Elena Bandini & Tiziano De Angelis & Giorgio Ferrari & Fausto Gozzi, 2022. "Optimal dividend payout under stochastic discounting," Mathematical Finance, Wiley Blackwell, vol. 32(2), pages 627-677, April.
    11. Bodnariu, Andi & Lindensjö, Kristoffer, 2024. "A controller-stopper-game with hidden controller type," Stochastic Processes and their Applications, Elsevier, vol. 173(C).
    12. Ferrari, Giorgio & Rodosthenous, Neofytos, 2025. "On the Singular Control of a Diffusion and Its Running Infimum or Supremum," Center for Mathematical Economics Working Papers 745, Center for Mathematical Economics, Bielefeld University.
    13. Lukas Gonon & Christoph Schwab, 2021. "Deep ReLU network expression rates for option prices in high-dimensional, exponential Lévy models," Finance and Stochastics, Springer, vol. 25(4), pages 615-657, October.
    14. Kohlmann, Michael, 1999. "(Reflected) Backward Stochastic Differential Equations and Contingent Claims," CoFE Discussion Papers 99/10, University of Konstanz, Center of Finance and Econometrics (CoFE).
    15. Jukka Isohätälä & Alistair Milne & Donald Robertson, 2020. "The Net Worth Trap: Investment and Output Dynamics in the Presence of Financing Constraints," Mathematics, MDPI, vol. 8(8), pages 1-32, August.
    16. Li, Hanwu, 2024. "Backward stochastic differential equations with double mean reflections," Stochastic Processes and their Applications, Elsevier, vol. 173(C).
    17. Moren Lévesque & Maria Minniti & Dean Shepherd, 2009. "Entrepreneurs’ Decisions on Timing of Entry: Learning from Participation and from the Experiences of Others," Entrepreneurship Theory and Practice, , vol. 33(2), pages 547-570, March.
    18. Damien Lamberton & Mohammed Mikou, 2013. "Exercise boundary of the American put near maturity in an exponential Lévy model," Finance and Stochastics, Springer, vol. 17(2), pages 355-394, April.
    19. Décamps, Jean-Paul & Villeneuve, Stéphane, 2022. "Learning about profitability and dynamic cash management," Journal of Economic Theory, Elsevier, vol. 205(C).
    20. Park, Kyunghyun & Wong, Hoi Ying & Yan, Tingjin, 2023. "Robust retirement and life insurance with inflation risk and model ambiguity," Insurance: Mathematics and Economics, Elsevier, vol. 110(C), pages 1-30.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:182:y:2025:i:c:s0304414924002631. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.