IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v107y2003i2p233-268.html

The great circle epidemic model

Author

Listed:
  • Ball, Frank
  • Neal, Peter

Abstract

We consider a stochastic model for the spread of an epidemic among a population of n individuals that are equally spaced around a circle. Throughout its infectious period, a typical infective, i say, makes global contacts, with individuals chosen independently and uniformly from the whole population, and local contacts, with individuals chosen independently and uniformly according to a contact distribution centred on i. The asymptotic situation in which the local contact distribution converges weakly as n-->[infinity] is analysed. A branching process approximation for the early stages of an epidemic is described and made rigorous as n-->[infinity] by using a coupling argument, yielding a threshold theorem for the model. A central limit theorem is derived for the final outcome of epidemics that take off, by using an embedding representation. The results are specialised to the case of a symmetric, nearest-neighbour local contact distribution.

Suggested Citation

  • Ball, Frank & Neal, Peter, 2003. "The great circle epidemic model," Stochastic Processes and their Applications, Elsevier, vol. 107(2), pages 233-268, October.
  • Handle: RePEc:eee:spapps:v:107:y:2003:i:2:p:233-268
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(03)00074-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Ball, Frank & Donnelly, Peter, 1995. "Strong approximations for epidemic models," Stochastic Processes and their Applications, Elsevier, vol. 55(1), pages 1-21, January.
    2. Cristopher Moore & M. E. J. Newman, 2000. "Epidemics and Percolation in Small-World Networks," Working Papers 00-01-002, Santa Fe Institute.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Devavrat Shah & Tauhid Zaman, 2016. "Finding Rumor Sources on Random Trees," Operations Research, INFORMS, vol. 64(3), pages 736-755, June.
    2. Demiris, Nikolaos & Kypraios, Theodore & Smith, L. Vanessa, 2012. "On the epidemic of financial crises," MPRA Paper 46693, University Library of Munich, Germany.
    3. Ganjeh-Ghazvini, Mostafa & Masihi, Mohsen & Ghaedi, Mojtaba, 2014. "Random walk–percolation-based modeling of two-phase flow in porous media: Breakthrough time and net to gross ratio estimation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 406(C), pages 214-221.
    4. Cristopher Moore & M. E. J. Newman, 2000. "Exact Solution of Site and Bond Percolation on Small-World Networks," Working Papers 00-01-007, Santa Fe Institute.
    5. Mahendra Piraveenan & Mikhail Prokopenko & Liaquat Hossain, 2013. "Percolation Centrality: Quantifying Graph-Theoretic Impact of Nodes during Percolation in Networks," PLOS ONE, Public Library of Science, vol. 8(1), pages 1-14, January.
    6. Zhao Zhang & Wen Xu & Weili Wu & Ding-Zhu Du, 2017. "A novel approach for detecting multiple rumor sources in networks with partial observations," Journal of Combinatorial Optimization, Springer, vol. 33(1), pages 132-146, January.
    7. Sadeghnejad, S. & Masihi, M. & King, P.R., 2013. "Dependency of percolation critical exponents on the exponent of power law size distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(24), pages 6189-6197.
    8. Pan, Ya-Nan & Lou, Jing-Jing & Han, Xiao-Pu, 2014. "Outbreak patterns of the novel avian influenza (H7N9)," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 401(C), pages 265-270.
    9. Dassisti, M. & Carnimeo, L., 2013. "A small-world methodology of analysis of interchange energy-networks: The European behaviour in the economical crisis," Energy Policy, Elsevier, vol. 63(C), pages 887-899.
    10. Silva, S.L. & Ferreira, J.A. & Martins, M.L., 2007. "Epidemic spreading in a scale-free network of regular lattices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 377(2), pages 689-697.
    11. Chen, Zezhun & Dassios, Angelos & Kuan, Valerie & Lim, Jia Wei & Qu, Yan & Surya, Budhi & Zhao, Hongbiao, 2021. "A two-phase dynamic contagion model for COVID-19," LSE Research Online Documents on Economics 105064, London School of Economics and Political Science, LSE Library.
    12. Greg Morrison & L Mahadevan, 2012. "Discovering Communities through Friendship," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-9, July.
    13. Bansaye, Vincent & Erny, Xavier & Méléard, Sylvie, 2024. "Sharp approximation and hitting times for stochastic invasion processes," Stochastic Processes and their Applications, Elsevier, vol. 178(C).
    14. Andrea Giovannetti, 2012. "Financial Contagion in Industrial Clusters: A Dynamical Analysis and Network Simulation," Department of Economics University of Siena 654, Department of Economics, University of Siena.
    15. Yang, Yang & Sun, Peng Gang & Hu, Xia & Li, Zhou Jun, 2014. "Closed walks for community detection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 397(C), pages 129-143.
    16. Shang, Jiaxing & Liu, Lianchen & Li, Xin & Xie, Feng & Wu, Cheng, 2015. "Epidemic spreading on complex networks with overlapping and non-overlapping community structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 171-182.
    17. Caccioli, Fabio & Farmer, J. Doyne & Foti, Nick & Rockmore, Daniel, 2015. "Overlapping portfolios, contagion, and financial stability," Journal of Economic Dynamics and Control, Elsevier, vol. 51(C), pages 50-63.
    18. Floortje Alkemade & Carolina Castaldi, 2005. "Strategies for the Diffusion of Innovations on Social Networks," Computational Economics, Springer;Society for Computational Economics, vol. 25(1), pages 3-23, February.
    19. Qin, Yang & Zhong, Xiaoxiong & Jiang, Hao & Ye, Yibin, 2015. "An environment aware epidemic spreading model and immune strategy in complex networks," Applied Mathematics and Computation, Elsevier, vol. 261(C), pages 206-215.
    20. Jaideep Ghosh & Avinash Kshitij, 2017. "Examining the Emergence of Large-scale Structures in Collaboration Networks: Methods in Sociological Analysis," Sociological Methods & Research, , vol. 46(4), pages 821-863, November.

    More about this item

    Keywords

    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:107:y:2003:i:2:p:233-268. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.