IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v82y2018ip3p3972-3980.html
   My bibliography  Save this article

A review on challenges in the assessment of geomechanical rock performance for deep geothermal reservoir development

Author

Listed:
  • Tomac, Ingrid
  • Sauter, Martin

Abstract

This review paper summarizes recent advances and challenges in the assessment of rock behavior and performance in deep low-permeability and high-temperature geothermal reservoirs. Geothermal energy systems for electricity production target deep rock between ca. 2km and 5km depth to obtain sufficiently elevated temperatures. Rock permeability enhancement faces many challenges, and therefore the development of Enhanced Geothermal Systems (EGS) still represents a pioneering effort. The potential and advantage of EGS above conventional geothermal reservoirs is its independence of the location that supplies sufficient heat and fluid. Several issues prevent the successful application of EGS technology. First, the effects of non-uniform in-situ stresses and loading history on rock fracturing are not well understood. Second, the role of rock anisotropy, heterogeneity and thermal effects on rock properties in the design of hydraulic fracturing operations is not clear. Third, the reduction of induced seismicity effects raises safety and public acceptance issues. This manuscript formulates outlines for future research directions. Specifically, the recommendations focus on the development of tools for better understanding and mitigating problems, which occur during stimulation of deep geothermal reservoirs.

Suggested Citation

  • Tomac, Ingrid & Sauter, Martin, 2018. "A review on challenges in the assessment of geomechanical rock performance for deep geothermal reservoir development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3972-3980.
  • Handle: RePEc:eee:rensus:v:82:y:2018:i:p3:p:3972-3980
    DOI: 10.1016/j.rser.2017.10.076
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032117314405
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2017.10.076?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhao, Yangsheng & Feng, Zijun & Xi, Baoping & Wan, Zhijun & Yang, Dong & Liang, Weiguo, 2015. "Deformation and instability failure of borehole at high temperature and high pressure in Hot Dry Rock exploitation," Renewable Energy, Elsevier, vol. 77(C), pages 159-165.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhu, Zhennan & Ranjith, Pathegama Gamage & Tian, Hong & Jiang, Guosheng & Dou, Bin & Mei, Gang, 2021. "Relationships between P-wave velocity and mechanical properties of granite after exposure to different cyclic heating and water cooling treatments," Renewable Energy, Elsevier, vol. 168(C), pages 375-392.
    2. Ma, Yuanyuan & Li, Shibin & Zhang, Ligang & Liu, Songze & Liu, Zhaoyi & Li, Hao & Shi, Erxiu & Liu, Xuemei & Liu, Hongliang, 2020. "Analysis on the heat extraction performance of multi-well injection enhanced geothermal system based on leaf-like bifurcated fracture networks," Energy, Elsevier, vol. 213(C).
    3. Liu, Jun & Wang, Fenghao & Cai, Wanlong & Wang, Zhihua & Li, Chun, 2020. "Numerical investigation on the effects of geological parameters and layered subsurface on the thermal performance of medium-deep borehole heat exchanger," Renewable Energy, Elsevier, vol. 149(C), pages 384-399.
    4. Zhou, Zhou & Jin, Yan & Zeng, Yijin & Zhang, Xudong & Zhou, Jian & Zhuang, Li & Xin, Shunyuan, 2020. "Investigation on fracture creation in hot dry rock geothermal formations of China during hydraulic fracturing," Renewable Energy, Elsevier, vol. 153(C), pages 301-313.
    5. Ren, Yaqian & Kong, Yanlong & Pang, Zhonghe & Wang, Jiyang, 2023. "A comprehensive review of tracer tests in enhanced geothermal systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    6. Cai, Jianchao & Zhang, Zhien & Wei, Wei & Guo, Dongming & Li, Shuai & Zhao, Peiqiang, 2019. "The critical factors for permeability-formation factor relation in reservoir rocks: Pore-throat ratio, tortuosity and connectivity," Energy, Elsevier, vol. 188(C).
    7. Xiangchao Shi & Leiyu Gao & Jie Wu & Cheng Zhu & Shuai Chen & Xiao Zhuo, 2020. "Effects of Cyclic Heating and Water Cooling on the Physical Characteristics of Granite," Energies, MDPI, vol. 13(9), pages 1-18, April.
    8. Xia, Z.H. & Jia, G.S. & Ma, Z.D. & Wang, J.W. & Zhang, Y.P. & Jin, L.W., 2021. "Analysis of economy, thermal efficiency and environmental impact of geothermal heating system based on life cycle assessments," Applied Energy, Elsevier, vol. 303(C).
    9. Xue, Yi & Liu, Shuai & Chai, Junrui & Liu, Jia & Ranjith, P.G. & Cai, Chengzheng & Gao, Feng & Bai, Xue, 2023. "Effect of water-cooling shock on fracture initiation and morphology of high-temperature granite: Application of hydraulic fracturing to enhanced geothermal systems," Applied Energy, Elsevier, vol. 337(C).
    10. Minglu Sun & Xu Zhang & Xingcheng Yuan & Zhongyou Yu & Yao Xiao & Ying Wang & Yunhui Zhang, 2022. "Hydrochemical Characteristics and Genetic Mechanism of Geothermal Springs in the Aba Area, Western Sichuan Province, China," Sustainability, MDPI, vol. 14(19), pages 1-21, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Fujian & Wang, Guiling & Hu, Dawei & Liu, Yanguang & Zhou, Hui & Tan, Xianfeng, 2021. "Calibrations of thermo-hydro-mechanical coupling parameters for heating and water-cooling treated granite," Renewable Energy, Elsevier, vol. 168(C), pages 544-558.
    2. Yan-Jun Shen & Xin Hou & Jiang-Qiang Yuan & Chun-Hu Zhao, 2019. "Experimental Study on Temperature Change and Crack Expansion of High Temperature Granite under Different Cooling Shock Treatments," Energies, MDPI, vol. 12(11), pages 1-17, May.
    3. Zhou, Luming & Zhu, Zhende & Xie, Xinghua & Hu, Yunjin, 2022. "Coupled thermal–hydraulic–mechanical model for an enhanced geothermal system and numerical analysis of its heat mining performance," Renewable Energy, Elsevier, vol. 181(C), pages 1440-1458.
    4. Wang, Yijiang & Jiang, Jinyi & Darkwa, Jo & Xu, Zeyuan & Zheng, Xiaofeng & Zhou, Guoqing, 2020. "Experimental study of thermal fracturing of Hot Dry Rock irradiated by moving laser beam: Temperature, efficiency and porosity," Renewable Energy, Elsevier, vol. 160(C), pages 803-816.
    5. Zhang, Wei & Qu, Zhanqing & Guo, Tiankui & Wang, Zhiyuan, 2019. "Study of the enhanced geothermal system (EGS) heat mining from variably fractured hot dry rock under thermal stress," Renewable Energy, Elsevier, vol. 143(C), pages 855-871.
    6. Hong Xue Han & Shunde Yin, 2018. "Determination of In-Situ Stress and Geomechanical Properties from Borehole Deformation," Energies, MDPI, vol. 11(1), pages 1-13, January.
    7. Peng Xiao & Jun Zheng & Bin Dou & Hong Tian & Guodong Cui & Muhammad Kashif, 2021. "Mechanical Behaviors of Granite after Thermal Shock with Different Cooling Rates," Energies, MDPI, vol. 14(13), pages 1-17, June.
    8. Shu, Biao & Zhu, Runjun & Zhang, Shaohe & Dick, Jeffrey, 2019. "A qualitative prediction method of new crack-initiation direction during hydraulic fracturing of pre-cracks based on hyperbolic failure envelope," Applied Energy, Elsevier, vol. 248(C), pages 185-195.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:82:y:2018:i:p3:p:3972-3980. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.