IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v72y2017icp105-116.html
   My bibliography  Save this article

Challenges in fabricating planar solid oxide fuel cells: A review

Author

Listed:
  • Mahmud, L.S.
  • Muchtar, A.
  • Somalu, M.R.

Abstract

Most technologies for fabricating solid oxide fuel cells (SOFCs) are adopted from ceramic-fabrication methods. Selecting an appropriate method of preparing SOFC components is a main concern for many researchers because the method can strongly affect SOFC properties and performance. The method must be reproducible and highly controllable to improve SOFC performance and durability. SOFC fabrication methods have been customized to achieve high power outputs at low operation temperatures and thus broaden the choice of material and reduce fabrication cost. This article provides an overview of planar SOFC fabrication methods. Planar SOFC fabrication methods such as uniaxial pressing, tape casting, screen printing, dip coating, and slurry spin coating are discussed because these methods are cost effective. This article also discusses the technical parameters that can influence the processes of these methods and SOFC performance. The methods of preparing the materials of SOFC components are discussed because these methods directly affect the fabrication process.

Suggested Citation

  • Mahmud, L.S. & Muchtar, A. & Somalu, M.R., 2017. "Challenges in fabricating planar solid oxide fuel cells: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 105-116.
  • Handle: RePEc:eee:rensus:v:72:y:2017:i:c:p:105-116
    DOI: 10.1016/j.rser.2017.01.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032117300229
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2017.01.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Joelle C. W. Mah & Isyraf Aznam & Andanastuti Muchtar & Mahendra Rao Somalu & Jarot Raharjo, 2023. "Synthesis of (Cu,Mn,Co) 3 O 4 Spinel: Effects of Citrate-to-Nitrate Ratio on Its Homogeneity and Electrical Properties," Energies, MDPI, vol. 16(3), pages 1-11, January.
    2. Lithnes Kalaivani Palniandy & Li Wan Yoon & Wai Yin Wong & Siek-Ting Yong & Ming Meng Pang, 2019. "Application of Biochar Derived from Different Types of Biomass and Treatment Methods as a Fuel Source for Direct Carbon Fuel Cells," Energies, MDPI, vol. 12(13), pages 1-15, June.
    3. Abdelkareem, Mohammad Ali & Tanveer, Waqas Hassan & Sayed, Enas Taha & Assad, M. El Haj & Allagui, Anis & Cha, S.W., 2019. "On the technical challenges affecting the performance of direct internal reforming biogas solid oxide fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 361-375.
    4. AlZahrani, Abdullah A. & Dincer, Ibrahim, 2022. "Assessment of a thin-electrolyte solid oxide cell for hydrogen production," Energy, Elsevier, vol. 243(C).
    5. Ferreira, Victor J. & Wolff, Deidre & Hornés, Aitor & Morata, Alex & Torrell, M. & Tarancón, Albert & Corchero, Cristina, 2021. "5 kW SOFC stack via 3D printing manufacturing: An evaluation of potential environmental benefits," Applied Energy, Elsevier, vol. 291(C).
    6. Orlando Corigliano & Leonardo Pagnotta & Petronilla Fragiacomo, 2022. "On the Technology of Solid Oxide Fuel Cell (SOFC) Energy Systems for Stationary Power Generation: A Review," Sustainability, MDPI, vol. 14(22), pages 1-73, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:72:y:2017:i:c:p:105-116. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.