IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v56y2016icp1101-1121.html
   My bibliography  Save this article

A review on cell/stack designs for high performance solid oxide fuel cells

Author

Listed:
  • Timurkutluk, Bora
  • Timurkutluk, Cigdem
  • Mat, Mahmut D.
  • Kaplan, Yuksel

Abstract

Besides the general advantages of fuel cells, including clean and quiet operation, solid oxide fuel cells (SOFCs) as being one of the high-temperature fuel cells also provide a relatively high efficiency due to enhanced reaction kinetics at high operating temperatures. The high operation temperature of SOFC also enables internal reforming of most hydrocarbons and can tolerate small quantities of impurities in the fuel. However, a high operation temperature limits the SOFC application areas to stationary applications because of a long start-up period and also is not desirable from the viewpoint of cost reduction and long-term stability especially for the cell materials. Therefore, the lowering the operation temperature of SOFCs is crucial for the cost reduction and the long term operation without degradation as well as the commercialization of the SOFC systems. The reduced operating temperature also helps to reduce the time and to save the energy required for the system start-up enabling SOFCs to have wider application areas including mobile/portable ones. Apart from the low operating temperature, the high performance along with a small volume is another requirement for SOFC to be used in mobile applications. Both can be achieved by fabricating novel SOFCs generating a high power output at low operating temperatures. Therefore, this paper reviews the current status and related research on the development of these high performance-SOFC cell/stack designs.

Suggested Citation

  • Timurkutluk, Bora & Timurkutluk, Cigdem & Mat, Mahmut D. & Kaplan, Yuksel, 2016. "A review on cell/stack designs for high performance solid oxide fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1101-1121.
  • Handle: RePEc:eee:rensus:v:56:y:2016:i:c:p:1101-1121
    DOI: 10.1016/j.rser.2015.12.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032115014173
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2015.12.034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mounir, Hamid & Belaiche, Mohamed & El Marjani, Abdellatif & El Gharad, Abdellah, 2014. "Thermal stress and probability of survival investigation in a multi-bundle integrated-planar solid oxide fuel cells IP-SOFC (integrated-planar solid oxide fuel cell)," Energy, Elsevier, vol. 66(C), pages 378-386.
    2. Park, Joonguen & Bae, Joongmyeon & Kim, Jae-Yuk, 2012. "A numerical study on anode thickness and channel diameter of anode-supported flat-tube solid oxide fuel cells," Renewable Energy, Elsevier, vol. 42(C), pages 180-185.
    3. Park, Joonguen & Kang, Juhyun & Bae, Joongmyeon, 2013. "Computational analysis of operating temperature, hydrogen flow rate and anode thickness in anode-supported flat-tube solid oxide fuel cells," Renewable Energy, Elsevier, vol. 54(C), pages 63-69.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hedayat, Nader & Du, Yanhai & Ilkhani, Hoda, 2017. "Review on fabrication techniques for porous electrodes of solid oxide fuel cells by sacrificial template methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1221-1239.
    2. Mei, Shuxue & Lu, Xiaorui & Zhu, Yu & Wang, Shixue, 2021. "Thermodynamic assessment of a system configuration strategy for a cogeneration system combining SOFC, thermoelectric generator, and absorption heat pump," Applied Energy, Elsevier, vol. 302(C).
    3. Wang, Fu & Deng, Shuai & Zhang, Houcheng & Wang, Jiatang & Zhao, Jiapei & Miao, He & Yuan, Jinliang & Yan, Jinyue, 2020. "A comprehensive review on high-temperature fuel cells with carbon capture," Applied Energy, Elsevier, vol. 275(C).
    4. Wilberforce, Tabbi & Ijaodola, O. & Ogungbemi, Emmanuel & Khatib, F.N. & Leslie, T. & El-Hassan, Zaki & Thomposon, J. & Olabi, A.G., 2019. "Technical evaluation of proton exchange membrane (PEM) fuel cell performance – A review of the effects of bipolar plates coating," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    5. Kamalimeera, N. & Kirubakaran, V., 2021. "Prospects and restraints in biogas fed SOFC for rural energization: A critical review in indian perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    6. Mohsen Fallah Vostakola & Bahman Amini Horri, 2021. "Progress in Material Development for Low-Temperature Solid Oxide Fuel Cells: A Review," Energies, MDPI, vol. 14(5), pages 1-53, February.
    7. Rajabi, Mahsa & Mehrpooya, Mehdi & Haibo, Zhao & Huang, Zhen, 2019. "Chemical looping technology in CHP (combined heat and power) and CCHP (combined cooling heating and power) systems: A critical review," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    8. Abdelkareem, Mohammad Ali & Tanveer, Waqas Hassan & Sayed, Enas Taha & Assad, M. El Haj & Allagui, Anis & Cha, S.W., 2019. "On the technical challenges affecting the performance of direct internal reforming biogas solid oxide fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 361-375.
    9. Tanveer, Waqas Hassan & Abdelkareem, Mohammad Ali & Kolosz, Ben W. & Rezk, Hegazy & Andresen, John & Cha, Suk Won & Sayed, Enas Taha, 2021. "The role of vacuum based technologies in solid oxide fuel cell development to utilize industrial waste carbon for power production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    10. Xiurong Fang & Jiang Zhu & Zijing Lin, 2018. "Effects of Electrode Composition and Thickness on the Mechanical Performance of a Solid Oxide Fuel Cell," Energies, MDPI, vol. 11(7), pages 1-13, July.
    11. Mehran, Muhammad Taqi & Khan, Muhammad Zubair & Song, Rak-Hyun & Lim, Tak-Hyoung & Naqvi, Muhammad & Raza, Rizwan & Zhu, Bin & Hanif, Muhammad Bilal, 2023. "A comprehensive review on durability improvement of solid oxide fuel cells for commercial stationary power generation systems," Applied Energy, Elsevier, vol. 352(C).
    12. Ferreira, Victor J. & Wolff, Deidre & Hornés, Aitor & Morata, Alex & Torrell, M. & Tarancón, Albert & Corchero, Cristina, 2021. "5 kW SOFC stack via 3D printing manufacturing: An evaluation of potential environmental benefits," Applied Energy, Elsevier, vol. 291(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Frank, Matthias & Deja, Robert & Peters, Roland & Blum, Ludger & Stolten, Detlef, 2018. "Bypassing renewable variability with a reversible solid oxide cell plant," Applied Energy, Elsevier, vol. 217(C), pages 101-112.
    2. He, Zhongjie & Li, Hua & Birgersson, E., 2016. "Correlating variability of modeling parameters with cell performance: Monte Carlo simulation of a quasi-3D planar solid oxide fuel cell," Renewable Energy, Elsevier, vol. 85(C), pages 1301-1315.
    3. Park, Joonguen & Kang, Juhyun & Bae, Joongmyeon, 2013. "Computational analysis of operating temperature, hydrogen flow rate and anode thickness in anode-supported flat-tube solid oxide fuel cells," Renewable Energy, Elsevier, vol. 54(C), pages 63-69.
    4. Guk, Erdogan & Kim, Jung-Sik & Ranaweera, Manoj & Venkatesan, Vijay & Jackson, Lisa, 2018. "In-situ monitoring of temperature distribution in operating solid oxide fuel cell cathode using proprietary sensory techniques versus commercial thermocouples," Applied Energy, Elsevier, vol. 230(C), pages 551-562.
    5. Barelli, L. & Bidini, G. & Ottaviano, A., 2016. "Solid oxide fuel cell modelling: Electrochemical performance and thermal management during load-following operation," Energy, Elsevier, vol. 115(P1), pages 107-119.
    6. Buonomano, Annamaria & Calise, Francesco & d’Accadia, Massimo Dentice & Palombo, Adolfo & Vicidomini, Maria, 2015. "Hybrid solid oxide fuel cells–gas turbine systems for combined heat and power: A review," Applied Energy, Elsevier, vol. 156(C), pages 32-85.
    7. Zhao, Hongbin & Jiang, Ting & Hou, Hucan, 2015. "Performance analysis of the SOFC–CCHP system based on H2O/Li–Br absorption refrigeration cycle fueled by coke oven gas," Energy, Elsevier, vol. 91(C), pages 983-993.
    8. Tonekabonimoghadam, S. & Akikur, R.K. & Hussain, M.A. & Hajimolana, S. & Saidur, R. & Ping, H.W. & Chakrabarti, M.H. & Brandon, N.P. & Aravind, P.V. & Nayagar, J.N.S. & Hashim, M.A., 2015. "Mathematical modelling and experimental validation of an anode-supported tubular solid oxide fuel cell for heat and power generation," Energy, Elsevier, vol. 90(P2), pages 1759-1768.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:56:y:2016:i:c:p:1101-1121. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.