IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v49y2015icp243-253.html
   My bibliography  Save this article

The historical evolution of the energy efficient buildings

Author

Listed:
  • Ionescu, Constantin
  • Baracu, Tudor
  • Vlad, Gabriela-Elena
  • Necula, Horia
  • Badea, Adrian

Abstract

The today energy efficient buildings are mainly related only to the available standards when their performances are described. This approach is correct just in terms of formal qualification to meet the requirements of the statutory rules and give people confidence. Beyond these facts, todays energy efficient buildings have to be known not only in the context of the existing technology, but also in the evolution of the equipment and the design concept used in synchronization with the contemporaneity of the science. In this paper, a historical laborious presentation of the techniques and concepts evolution that lead to energy efficient buildings as we know them today, is presented. An overview of the modern approach for the design of the main elements of such type of buildings is also presented. The paper realizes a review of the current state of the energy efficient buildings, in terms of definitions and characteristics.

Suggested Citation

  • Ionescu, Constantin & Baracu, Tudor & Vlad, Gabriela-Elena & Necula, Horia & Badea, Adrian, 2015. "The historical evolution of the energy efficient buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 243-253.
  • Handle: RePEc:eee:rensus:v:49:y:2015:i:c:p:243-253
    DOI: 10.1016/j.rser.2015.04.062
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032115003329
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2015.04.062?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sayigh, Ali & Marafia, A. Hamid, 1998. "Chapter 1--Thermal comfort and the development of bioclimatic concept in building design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 2(1-2), pages 3-24, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michele La Noce & Alessandro Lo Faro & Gaetano Sciuto, 2021. "Clay-Based Products Sustainable Development: Some Applications," Sustainability, MDPI, vol. 13(3), pages 1-26, January.
    2. Alexander Rieser & Rainer Pfluger & Alexandra Troi & Daniel Herrera-Avellanosa & Kirsten Engelund Thomsen & Jørgen Rose & Zeynep Durmuş Arsan & Gulden Gokcen Akkurt & Gerhard Kopeinig & Gaëlle Guyot &, 2021. "Integration of Energy-Efficient Ventilation Systems in Historic Buildings—Review and Proposal of a Systematic Intervention Approach," Sustainability, MDPI, vol. 13(4), pages 1-21, February.
    3. Adrian Pitts, 2017. "Passive House and Low Energy Buildings: Barriers and Opportunities for Future Development within UK Practice," Sustainability, MDPI, vol. 9(2), pages 1-26, February.
    4. Ramirez Camargo, Luis & Nitsch, Felix & Gruber, Katharina & Dorner, Wolfgang, 2018. "Electricity self-sufficiency of single-family houses in Germany and the Czech Republic," Applied Energy, Elsevier, vol. 228(C), pages 902-915.
    5. Hossain, Md. Faruque, 2018. "Green science: Advanced building design technology to mitigate energy and environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 3051-3060.
    6. Gourlis, Georgios & Kovacic, Iva, 2017. "Building Information Modelling for analysis of energy efficient industrial buildings – A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 953-963.
    7. Cui, Hongzhi & Tang, Waiching & Qin, Qinghua & Xing, Feng & Liao, Wenyu & Wen, Haibo, 2017. "Development of structural-functional integrated energy storage concrete with innovative macro-encapsulated PCM by hollow steel ball," Applied Energy, Elsevier, vol. 185(P1), pages 107-118.
    8. Sanghyo Lee & Sungho Tae & Sungwoo Shin, 2015. "Profit Distribution in Guaranteed Savings Contracts: Determination Based on the Collar Option Model," Sustainability, MDPI, vol. 7(12), pages 1-17, December.
    9. Căruțașiu Mihail-Bogdan & Ionescu Constantin & Necula Horia, 2017. "Optimal technical and economic strategy for retrofitting residential buildings in Romania," Proceedings of the International Conference on Business Excellence, Sciendo, vol. 11(1), pages 146-156, July.
    10. Jomehzadeh, Fatemeh & Nejat, Payam & Calautit, John Kaiser & Yusof, Mohd Badruddin Mohd & Zaki, Sheikh Ahmad & Hughes, Ben Richard & Yazid, Muhammad Noor Afiq Witri Muhammad, 2017. "A review on windcatcher for passive cooling and natural ventilation in buildings, Part 1: Indoor air quality and thermal comfort assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 736-756.
    11. Ryms, Michał & Januszewicz, Katarzyna & Haustein, Elżbieta & Kazimierski, Paweł & Lewandowski, Witold M., 2022. "Thermal properties of a cement composite containing phase change materials (PCMs) with post-pyrolytic char obtained from spent tyres as a carrier," Energy, Elsevier, vol. 239(PA).
    12. Shady Attia, 2020. "Spatial and Behavioral Thermal Adaptation in Net Zero Energy Buildings: An Exploratory Investigation," Sustainability, MDPI, vol. 12(19), pages 1-15, September.
    13. Zhou, Zhihua & Liu, Yurong & Yuan, Jianjuan & Zuo, Jian & Chen, Guanyi & Xu, Linyu & Rameezdeen, Raufdeen, 2016. "Indoor PM2.5 concentrations in residential buildings during a severely polluted winter: A case study in Tianjin, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 372-381.
    14. Pang, Zhihong & Chen, Yan & Zhang, Jian & O'Neill, Zheng & Cheng, Hwakong & Dong, Bing, 2021. "How much HVAC energy could be saved from the occupant-centric smart home thermostat: A nationwide simulation study," Applied Energy, Elsevier, vol. 283(C).
    15. Feng, Wei & Zhang, Qianning & Ji, Hui & Wang, Ran & Zhou, Nan & Ye, Qing & Hao, Bin & Li, Yutong & Luo, Duo & Lau, Stephen Siu Yu, 2019. "A review of net zero energy buildings in hot and humid climates: Experience learned from 34 case study buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    16. Lee, Junghun & Kim, Jeonggook & Song, Doosam & Kim, Jonghun & Jang, Cheolyong, 2017. "Impact of external insulation and internal thermal density upon energy consumption of buildings in a temperate climate with four distinct seasons," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1081-1088.
    17. Coma Bassas, Ester & Patterson, Joanne & Jones, Phillip, 2020. "A review of the evolution of green residential architecture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 125(C).
    18. Roh, Seungjun & Tae, Sungho & Suk, Sung Joon & Ford, George, 2017. "Evaluating the embodied environmental impacts of major building tasks and materials of apartment buildings in Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 135-144.
    19. Anna Romanska-Zapala & Mark Bomberg & Miroslaw Dechnik & Malgorzata Fedorczak-Cisak & Marcin Furtak, 2019. "On Preheating of the Outdoor Ventilation Air," Energies, MDPI, vol. 13(1), pages 1-12, December.
    20. Heiskanen, Eva & Matschoss, Kaisa, 2017. "Understanding the uneven diffusion of building-scale renewable energy systems: A review of household, local and country level factors in diverse European countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 580-591.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Taleghani, Mohammad & Tenpierik, Martin & Kurvers, Stanley & van den Dobbelsteen, Andy, 2013. "A review into thermal comfort in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 201-215.
    2. Enescu, Diana, 2017. "A review of thermal comfort models and indicators for indoor environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1353-1379.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:49:y:2015:i:c:p:243-253. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.