IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v166y2022ics1364032122005536.html
   My bibliography  Save this article

Inorganic nanoparticles to overcome efficiency inhibitors of organic photovoltaics: An in-depth review

Author

Listed:
  • Kamel, Michael S.A.
  • Al-jumaili, Ahmed
  • Oelgemöller, Michael
  • Jacob, Mohan V.

Abstract

Organic photovoltaics (OPVs) have received considerable attention over the past two decades as a promising alternative to their inorganic counterparts. Although the power conversion efficiency (PCE) of OPVs has rapidly increased in the last ten years exceeding 18%, higher PCEs are still needed to commercialize this emerging technology. The weak light absorption, particularly at wavelengths outside the visible region, and the recombination losses of the photo-generated charge carriers represent the major challenges for the PCE of OPVS. The light harvest and survival of the photo-generated charge carriers within OPVs are restricted to multiple factors such as material properties and device engineering. The application of different types of inorganic nanoparticles (INPs) in OPVs has been reported by many researchers as an effective strategy to overcome most of the PCE-limitations. Here, a comprehensive overview of the progress in the performance of OPVs due to the application of different INPs over the past decade is provided. This review also presents an in-depth analysis of the efficiency loss pathways at the different steps of the photovoltaic effect and how INPs can address these issues resulting in PCE enhancement of OPVs. Finally, the impacts of this approach on the stability and cost of the device in addition to challenges and outlook are discussed.

Suggested Citation

  • Kamel, Michael S.A. & Al-jumaili, Ahmed & Oelgemöller, Michael & Jacob, Mohan V., 2022. "Inorganic nanoparticles to overcome efficiency inhibitors of organic photovoltaics: An in-depth review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
  • Handle: RePEc:eee:rensus:v:166:y:2022:i:c:s1364032122005536
    DOI: 10.1016/j.rser.2022.112661
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032122005536
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2022.112661?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chao Li & Jiadong Zhou & Jiali Song & Jinqiu Xu & Huotian Zhang & Xuning Zhang & Jing Guo & Lei Zhu & Donghui Wei & Guangchao Han & Jie Min & Yuan Zhang & Zengqi Xie & Yuanping Yi & He Yan & Feng Gao , 2021. "Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells," Nature Energy, Nature, vol. 6(6), pages 605-613, June.
    2. Kumavat, Priyanka P. & Sonar, Prashant & Dalal, Dipak S., 2017. "An overview on basics of organic and dye sensitized solar cells, their mechanism and recent improvements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1262-1287.
    3. Xuelin Wang & Qianqian Sun & Jinhua Gao & Jian Wang & Chunyu Xu & Xiaoling Ma & Fujun Zhang, 2021. "Recent Progress of Organic Photovoltaics with Efficiency over 17%," Energies, MDPI, vol. 14(14), pages 1-27, July.
    4. Alkhalayfeh, Muheeb Ahmad & Aziz, Azlan Abdul & Pakhuruddin, Mohd Zamir, 2021. "An overview of enhanced polymer solar cells with embedded plasmonic nanoparticles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    5. Bo Wu & Xiangyang Wu & Cao Guan & Kong Fai Tai & Edwin Kok Lee Yeow & Hong Jin Fan & Nripan Mathews & Tze Chien Sum, 2013. "Uncovering loss mechanisms in silver nanoparticle-blended plasmonic organic solar cells," Nature Communications, Nature, vol. 4(1), pages 1-7, October.
    6. Liu, Xuxu & Chen, Huajie & Tan, Songting, 2015. "Overview of high-efficiency organic photovoltaic materials and devices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1527-1538.
    7. Jingbo Zhao & Yunke Li & Guofang Yang & Kui Jiang & Haoran Lin & Harald Ade & Wei Ma & He Yan, 2016. "Efficient organic solar cells processed from hydrocarbon solvents," Nature Energy, Nature, vol. 1(2), pages 1-7, February.
    8. Rafique, Saqib & Abdullah, Shahino Mah & Sulaiman, Khaulah & Iwamoto, Mitsumasa, 2018. "Fundamentals of bulk heterojunction organic solar cells: An overview of stability/degradation issues and strategies for improvement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 84(C), pages 43-53.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qiuju Liang & Jianhong Yao & Zhangbo Hu & Puxin Wei & Haodong Lu & Yukai Yin & Kang Wang & Jiangang Liu, 2021. "Recent Advances of Film–Forming Kinetics in Organic Solar Cells," Energies, MDPI, vol. 14(22), pages 1-26, November.
    2. Daniel Corzo & Diego Rosas-Villalva & Amruth C & Guillermo Tostado-Blázquez & Emily Bezerra Alexandre & Luis Huerta Hernandez & Jianhua Han & Han Xu & Maxime Babics & Stefaan Wolf & Derya Baran, 2023. "High-performing organic electronics using terpene green solvents from renewable feedstocks," Nature Energy, Nature, vol. 8(1), pages 62-73, January.
    3. Gracia-Amillo, Ana M. & Bardizza, Giorgio & Salis, Elena & Huld, Thomas & Dunlop, Ewan D., 2018. "Energy-based metric for analysis of organic PV devices in comparison with conventional industrial technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 76-89.
    4. Boudia Mohamed El Amine & Yi Zhou & Hongying Li & Qiuwang Wang & Jun Xi & Cunlu Zhao, 2023. "Latest Updates of Single-Junction Organic Solar Cells up to 20% Efficiency," Energies, MDPI, vol. 16(9), pages 1-12, May.
    5. Alkhalayfeh, Muheeb Ahmad & Aziz, Azlan Abdul & Pakhuruddin, Mohd Zamir, 2021. "An overview of enhanced polymer solar cells with embedded plasmonic nanoparticles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    6. Chee, A. Kuan-Way, 2023. "On current technology for light absorber materials used in highly efficient industrial solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    7. Guo, Lukai & Wang, Hao, 2022. "Non-intrusive movable energy harvesting devices: Materials, designs, and their prospective uses on transportation infrastructures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    8. Yuanyuan Jiang & Yixin Li & Feng Liu & Wenxuan Wang & Wenli Su & Wuyue Liu & Songjun Liu & Wenkai Zhang & Jianhui Hou & Shengjie Xu & Yuanping Yi & Xiaozhang Zhu, 2023. "Suppressing electron-phonon coupling in organic photovoltaics for high-efficiency power conversion," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    9. Xuelin Wang & Qianqian Sun & Jinhua Gao & Jian Wang & Chunyu Xu & Xiaoling Ma & Fujun Zhang, 2021. "Recent Progress of Organic Photovoltaics with Efficiency over 17%," Energies, MDPI, vol. 14(14), pages 1-27, July.
    10. Hao Zhang & Chenyang Tian & Ziqi Zhang & Meiling Xie & Jianqi Zhang & Lingyun Zhu & Zhixiang Wei, 2023. "Concretized structural evolution supported assembly-controlled film-forming kinetics in slot-die coated organic photovoltaics," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    11. Hadipour, Hassan & Amiri, Maghsoud & Sharifi, Mani, 2019. "Redundancy allocation in series-parallel systems under warm standby and active components in repairable subsystems," Reliability Engineering and System Safety, Elsevier, vol. 192(C).
    12. Peharz, Gerhard & Ulm, Andreas, 2018. "Quantifying the influence of colors on the performance of c-Si photovoltaic devices," Renewable Energy, Elsevier, vol. 129(PA), pages 299-308.
    13. Yanan Shi & Yilin Chang & Kun Lu & Zhihao Chen & Jianqi Zhang & Yangjun Yan & Dingding Qiu & Yanan Liu & Muhammad Abdullah Adil & Wei Ma & Xiaotao Hao & Lingyun Zhu & Zhixiang Wei, 2022. "Small reorganization energy acceptors enable low energy losses in non-fullerene organic solar cells," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    14. Bin Liu & Huiliang Sun & Jin-Woo Lee & Zhengyan Jiang & Junqin Qiao & Junwei Wang & Jie Yang & Kui Feng & Qiaogan Liao & Mingwei An & Bolin Li & Dongxue Han & Baomin Xu & Hongzhen Lian & Li Niu & Bumj, 2023. "Efficient and stable organic solar cells enabled by multicomponent photoactive layer based on one-pot polymerization," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    15. Sri Harish Kumar Paleti & Sandra Hultmark & Jianhua Han & Yuanfan Wen & Han Xu & Si Chen & Emmy Järsvall & Ishita Jalan & Diego Rosas Villalva & Anirudh Sharma & Jafar. I. Khan & Ellen Moons & Ruipeng, 2023. "Hexanary blends: a strategy towards thermally stable organic photovoltaics," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    16. Guangpei Sun & Xin Jiang & Xiaojun Li & Lei Meng & Jinyuan Zhang & Shucheng Qin & Xiaolei Kong & Jing Li & Jingming Xin & Wei Ma & Yongfang Li, 2022. "High performance polymerized small molecule acceptor by synergistic optimization on π-bridge linker and side chain," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    17. Xinlei Wu & Yuanpeng Zhang & Kaihang Shi & Xiaoling Ma & Fujun Zhang, 2023. "Advanced Progress of Organic Photovoltaics," Energies, MDPI, vol. 16(3), pages 1-3, January.
    18. Hongyue Tian & Mingxin Zhao & Xiaoling Ma & Chunyu Xu & Wenjing Xu & Zhongyuan Liu & Miao Zhang & Fujun Zhang, 2023. "Critical Progress of Polymer Solar Cells with a Power Conversion Efficiency over 18%," Energies, MDPI, vol. 16(11), pages 1-34, June.
    19. Alexander V. Mumyatov & Pavel A. Troshin, 2023. "A Review on Fullerene Derivatives with Reduced Electron Affinity as Acceptor Materials for Organic Solar Cells," Energies, MDPI, vol. 16(4), pages 1-60, February.
    20. Wei Gao & Ruijie Ma & Top Archie Dela Peña & Cenqi Yan & Hongxiang Li & Mingjie Li & Jiaying Wu & Pei Cheng & Cheng Zhong & Zhanhua Wei & Alex K.-Y. Jen & Gang Li, 2024. "Efficient all-small-molecule organic solar cells processed with non-halogen solvent," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:166:y:2022:i:c:s1364032122005536. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.