IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v165y2022ics1364032122004762.html
   My bibliography  Save this article

Environmental Impact Assessment for the decommissioning of offshore wind farms

Author

Listed:
  • R, Hall
  • E, Topham
  • E, João

Abstract

The rapid growth of renewable energy developments, particularly offshore wind, means that worldwide there are hundreds of artificial structures in the marine environment that will at some point require removal. Decommissioning activities can have a range of effects on the environment, which are assessed through an Environmental Impact Assessment (EIA) prior to removal. EIA provides an opportunity to explore the best environmental options for decommissioning if utilised early in the planning process during the wind farm design. EIA should be utilised as a decision-aiding tool to assess impacts and design mitigation and monitoring across the life of an asset. In this paper, potential environmental impacts, mitigation measures, and alternative actions are explored as examples of best environmental practice-based thinking at a range of scales and for multiple receptors. The removal of structures might be challenging with regards to best environmental options if countries require changes to policy. We pose alternative actions to be considered in EIA which take circular economy into account and maximise environmental benefit in the long term. To enable the best environmental outcomes, we propose that EIA should be used proactively and reflectively with a tailored approach to designing decommissioning.

Suggested Citation

  • R, Hall & E, Topham & E, João, 2022. "Environmental Impact Assessment for the decommissioning of offshore wind farms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
  • Handle: RePEc:eee:rensus:v:165:y:2022:i:c:s1364032122004762
    DOI: 10.1016/j.rser.2022.112580
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032122004762
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2022.112580?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ashley, M.C. & Mangi, S.C. & Rodwell, L.D., 2014. "The potential of offshore windfarms to act as marine protected areas – A systematic review of current evidence," Marine Policy, Elsevier, vol. 45(C), pages 301-309.
    2. Vaissière, Anne-Charlotte & Levrel, Harold & Pioch, Sylvain & Carlier, Antoine, 2014. "Biodiversity offsets for offshore wind farm projects: The current situation in Europe," Marine Policy, Elsevier, vol. 48(C), pages 172-183.
    3. Invernizzi, Diletta Colette & Locatelli, Giorgio & Velenturf, Anne & Love, Peter ED. & Purnell, Phil & Brookes, Naomi J., 2020. "Developing policies for the end-of-life of energy infrastructure: Coming to terms with the challenges of decommissioning," Energy Policy, Elsevier, vol. 144(C).
    4. Gourvenec, Susan & Sturt, Fraser & Reid, Emily & Trigos, Federico, 2022. "Global assessment of historical, current and forecast ocean energy infrastructure: Implications for marine space planning, sustainable design and end-of-engineered-life management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    5. Masden, Elizabeth A. & McCluskie, Aly & Owen, Ellie & Langston, Rowena H.W., 2015. "Renewable energy developments in an uncertain world: The case of offshore wind and birds in the UK," Marine Policy, Elsevier, vol. 51(C), pages 169-172.
    6. Topham, Eva & McMillan, David & Bradley, Stuart & Hart, Edward, 2019. "Recycling offshore wind farms at decommissioning stage," Energy Policy, Elsevier, vol. 129(C), pages 698-709.
    7. Gyan Charitha de Silva & Eugenie Christine Regan & Edward Henry Beattie Pollard & Prue Frances Elizabeth Addison, 2019. "The evolution of corporate no net loss and net positive impact biodiversity commitments: Understanding appetite and addressing challenges," Business Strategy and the Environment, Wiley Blackwell, vol. 28(7), pages 1481-1495, November.
    8. Snyder, Brian & Kaiser, Mark J., 2009. "Offshore wind power in the US: Regulatory issues and models for regulation," Energy Policy, Elsevier, vol. 37(11), pages 4442-4453, November.
    9. C, O. Mauricio Hernandez & Shadman, Milad & Amiri, Mojtaba Maali & Silva, Corbiniano & Estefen, Segen F. & La Rovere, Emilio, 2021. "Environmental impacts of offshore wind installation, operation and maintenance, and decommissioning activities: A case study of Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    10. Abramic, A. & García Mendoza, A. & Haroun, R., 2021. "Introducing offshore wind energy in the sea space: Canary Islands case study developed under Maritime Spatial Planning principles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    11. Topham, Eva & McMillan, David, 2017. "Sustainable decommissioning of an offshore wind farm," Renewable Energy, Elsevier, vol. 102(PB), pages 470-480.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anne P. M. Velenturf, 2021. "A Framework and Baseline for the Integration of a Sustainable Circular Economy in Offshore Wind," Energies, MDPI, vol. 14(17), pages 1-41, September.
    2. Jens Lüdeke, 2017. "Offshore Wind Energy: Good Practice in Impact Assessment, Mitigation and Compensation," Journal of Environmental Assessment Policy and Management (JEAPM), World Scientific Publishing Co. Pte. Ltd., vol. 19(01), pages 1-31, March.
    3. C, O. Mauricio Hernandez & Shadman, Milad & Amiri, Mojtaba Maali & Silva, Corbiniano & Estefen, Segen F. & La Rovere, Emilio, 2021. "Environmental impacts of offshore wind installation, operation and maintenance, and decommissioning activities: A case study of Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    4. Ho, Lip-Wah & Lie, Tek-Tjing & Leong, Paul TM & Clear, Tony, 2018. "Developing offshore wind farm siting criteria by using an international Delphi method," Energy Policy, Elsevier, vol. 113(C), pages 53-67.
    5. Winkler, Lorenz & Kilic, Onur A. & Veldman, Jasper, 2022. "Collaboration in the offshore wind farm decommissioning supply chain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    6. Fox, Clive J. & Benjamins, Steven & Masden, Elizabeth A. & Miller, Raeanne, 2018. "Challenges and opportunities in monitoring the impacts of tidal-stream energy devices on marine vertebrates," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1926-1938.
    7. Benjamin Pakenham & Anna Ermakova & Ali Mehmanparast, 2021. "A Review of Life Extension Strategies for Offshore Wind Farms Using Techno-Economic Assessments," Energies, MDPI, vol. 14(7), pages 1-23, March.
    8. Li, Chen & Mogollón, José M. & Tukker, Arnold & Dong, Jianning & von Terzi, Dominic & Zhang, Chunbo & Steubing, Bernhard, 2022. "Future material requirements for global sustainable offshore wind energy development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    9. Abramic, A. & García Mendoza, A. & Haroun, R., 2021. "Introducing offshore wind energy in the sea space: Canary Islands case study developed under Maritime Spatial Planning principles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    10. Majidi Nezhad, Meysam & Neshat, Mehdi & Piras, Giuseppe & Astiaso Garcia, Davide, 2022. "Sites exploring prioritisation of offshore wind energy potential and mapping for wind farms installation: Iranian islands case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    11. Santiago Salvador & Marta Chantal Ribeiro, 2023. "Socio‐economic, legal, and political context of offshore renewable energies," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 12(2), March.
    12. Leite, Gustavo de Novaes Pires & Weschenfelder, Franciele & Farias, João Gabriel de & Kamal Ahmad, Muhammad, 2022. "Economic and sensitivity analysis on wind farm end-of-life strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    13. Beauson, J. & Laurent, A. & Rudolph, D.P. & Pagh Jensen, J., 2022. "The complex end-of-life of wind turbine blades: A review of the European context," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    14. Yashuang Feng & Lixiao Zhang, 2023. "The GHG Intensities of Wind Power Plants in China from a Life-Cycle Perspective: The Impacts of Geographical Location, Turbine Technology and Management Level," Sustainability, MDPI, vol. 15(5), pages 1-17, March.
    15. Vincenzo Basile & Nunzia Capobianco & Roberto Vona, 2021. "The usefulness of sustainable business models: Analysis from oil and gas industry," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 28(6), pages 1801-1821, November.
    16. João Agra Neto & Mario Orestes Aguirre González & Rajiv Lucas Pereira de Castro & David Cassimiro de Melo & Kezauyn Miranda Aiquoc & Andressa Medeiros Santiso & Rafael Monteiro de Vasconcelos & Lucas , 2024. "Factors Influencing the Decision-Making Process at the End-of-Life Cycle of Onshore Wind Farms: A Systematic Review," Energies, MDPI, vol. 17(4), pages 1-42, February.
    17. Gasparatos, Alexandros & Doll, Christopher N.H. & Esteban, Miguel & Ahmed, Abubakari & Olang, Tabitha A., 2017. "Renewable energy and biodiversity: Implications for transitioning to a Green Economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 161-184.
    18. Noor Amila Wan Abdullah Zawawi & Kamaluddeen Usman Danyaro & M. S. Liew & Lim Eu Shawn, 2023. "Environmental Sustainability and Efficiency of Offshore Platform Decommissioning: A Review," Sustainability, MDPI, vol. 15(17), pages 1-18, August.
    19. Putuhena, Hugo & White, David & Gourvenec, Susan & Sturt, Fraser, 2023. "Finding space for offshore wind to support net zero: A methodology to assess spatial constraints and future scenarios, illustrated by a UK case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    20. Shamsan Alsubal & Wesam Salah Alaloul & Eu Lim Shawn & M. S. Liew & Pavitirakumar Palaniappan & Muhammad Ali Musarat, 2021. "Life Cycle Cost Assessment of Offshore Wind Farm: Kudat Malaysia Case," Sustainability, MDPI, vol. 13(14), pages 1-14, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:165:y:2022:i:c:s1364032122004762. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.