IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v94y2016icp524-536.html
   My bibliography  Save this article

A comprehensive economic analysis method for selecting the PV array structure in grid–connected photovoltaic systems

Author

Listed:
  • Bakhshi, Reza
  • Sadeh, Javad

Abstract

In grid–connected photovoltaic (GCPV) systems, applying a solar tracker results in a higher energy production level. However, this does not necessarily mean a greater profit due to the excess of generation selling, since the capital and maintenance costs increase as well. In this paper, a comprehensive economic analysis method for selecting the PV array structure type has been proposed. To this end, a precise method to compute the yearly generated electrical energy (solar converted energy) has been presented by applying the global radiation relation between different structures, i.e. fixed, single axis (vertical and horizontal) and dual axis trackers. Also, the simple and yet accurate efficiency model and power relation are used for solar inverter and panel, respectively. The analysis is accomplished by determining the economic parameters, including net present value (NPV), internal rate of return (IRR), and payback period time (PBT) for all PV structures with the same electrical energy generation or profit. Due to the results simplicity and robustness in different economic conditions, the same energy production scenario is chosen in this paper. In accordance with this assumption, PV panel, inverter and tracker sizes and net present costs (NPC) are determined. Since the net present benefit (NPB) for all structures is equal, the lowest NPC is considered the most economic choice. The performance of the suggested algorithm is evaluated through a commercial dual axis GCPV system simulation. Moreover, in order to determine the best suited economic parameters, a sensitivity analysis has also been carried out in the process.

Suggested Citation

  • Bakhshi, Reza & Sadeh, Javad, 2016. "A comprehensive economic analysis method for selecting the PV array structure in grid–connected photovoltaic systems," Renewable Energy, Elsevier, vol. 94(C), pages 524-536.
  • Handle: RePEc:eee:renene:v:94:y:2016:i:c:p:524-536
    DOI: 10.1016/j.renene.2016.03.091
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148116302750
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.03.091?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bey, M. & Hamidat, A. & Nacer, T., 2021. "Eco-energetic feasibility study of using grid-connected photovoltaic system in wastewater treatment plant," Energy, Elsevier, vol. 216(C).
    2. Bahrami, Arian & Okoye, Chiemeka Onyeka, 2018. "The performance and ranking pattern of PV systems incorporated with solar trackers in the northern hemisphere," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 138-151.
    3. Cícero Augusto de Souza & Diego Jose da Silva & Priscila Rossoni & Edmarcio Antonio Belati & Ademir Pelizari & Jesús M. López-Lezama & Nicolás Muñoz-Galeano, 2023. "Multi-Period Optimal Power Flow with Photovoltaic Generation Considering Optimized Power Factor Control," Sustainability, MDPI, vol. 15(19), pages 1-20, September.
    4. Hoseinzadeh, Siamak & Astiaso Garcia, Davide & Huang, Lizhen, 2023. "Grid-connected renewable energy systems flexibility in Norway islands’ Decarbonization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    5. Shabani, Masoume & Mahmoudimehr, Javad, 2018. "Techno-economic role of PV tracking technology in a hybrid PV-hydroelectric standalone power system," Applied Energy, Elsevier, vol. 212(C), pages 84-108.
    6. Talavera, D.L. & Muñoz-Cerón, Emilio & Ferrer-Rodríguez, J.P. & Pérez-Higueras, Pedro J., 2019. "Assessment of cost-competitiveness and profitability of fixed and tracking photovoltaic systems: The case of five specific sites," Renewable Energy, Elsevier, vol. 134(C), pages 902-913.
    7. Hammad, Bashar & Al-Sardeah, Ali & Al-Abed, Mohammad & Nijmeh, Salem & Al-Ghandoor, Ahmed, 2017. "Performance and economic comparison of fixed and tracking photovoltaic systems in Jordan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 827-839.
    8. Every, Jeremy & Li, Li & Dorrell, David G., 2017. "Leveraging smart meter data for economic optimization of residential photovoltaics under existing tariff structures and incentive schemes," Applied Energy, Elsevier, vol. 201(C), pages 158-173.
    9. Shabani, Masoume & Dahlquist, Erik & Wallin, Fredrik & Yan, Jinyue, 2020. "Techno-economic comparison of optimal design of renewable-battery storage and renewable micro pumped hydro storage power supply systems: A case study in Sweden," Applied Energy, Elsevier, vol. 279(C).
    10. Mayer, Martin János, 2022. "Impact of the tilt angle, inverter sizing factor and row spacing on the photovoltaic power forecast accuracy," Applied Energy, Elsevier, vol. 323(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:94:y:2016:i:c:p:524-536. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.