IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v83y2015icp1352-1361.html
   My bibliography  Save this article

Isolated induction generator in a rural Brazilian area: Field performance tests

Author

Listed:
  • Braga, A.V.
  • Rezek, A.J.J.
  • Silva, V.F.
  • Viana, A.N.C.
  • Bortoni, E.C.
  • Sanchez, W.D.C.
  • Ribeiro, P.F.

Abstract

Isolated generation in micro hydroeletric power plant (MHPP) through the induction generator (IG) has been the subject of extensive research due to the fact that this type of electrical machine is easy to operate, requires simplified maintenance, and has also a lower cost when compared to the synchronous machine, mainly in the range from 0.5 to 50 kW. In this work a single voltage control loop of an squirrel cage induction generator in an isolated operation system was implemented in a 30 kW MHPP. The proposed system uses a ballast load (BL) controlled via a digital circuit board. The generated voltage and frequency are maintained around their nominal rated values for typical applications in rural areas. For this purpose a control system has been implemented via phase anti–parallel thyristors. Tests were made with varying loads to obtain the voltage waveforms in the main load (ML) and BL. The control allowed by the electronic board was also tested for performance under sudden connection and disconnection of loads. The proposed system proved to be robust and effective in controlling the voltage and frequency of the isolated system.

Suggested Citation

  • Braga, A.V. & Rezek, A.J.J. & Silva, V.F. & Viana, A.N.C. & Bortoni, E.C. & Sanchez, W.D.C. & Ribeiro, P.F., 2015. "Isolated induction generator in a rural Brazilian area: Field performance tests," Renewable Energy, Elsevier, vol. 83(C), pages 1352-1361.
  • Handle: RePEc:eee:renene:v:83:y:2015:i:c:p:1352-1361
    DOI: 10.1016/j.renene.2015.05.057
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148115300215
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2015.05.057?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ion, C.P. & Marinescu, C., 2011. "Autonomous micro hydro power plant with induction generator," Renewable Energy, Elsevier, vol. 36(8), pages 2259-2267.
    2. Arriaga, Mariano, 2010. "Pump as turbine – A pico-hydro alternative in Lao People's Democratic Republic," Renewable Energy, Elsevier, vol. 35(5), pages 1109-1115.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei, Liangliang & Nakamura, Taketsune & Imai, Keita, 2020. "Development and optimization of low-speed and high-efficiency permanent magnet generator for micro hydro-electrical generation system," Renewable Energy, Elsevier, vol. 147(P1), pages 1653-1662.
    2. Tapia, A. & Millán, P. & Gómez-Estern, F., 2018. "Integer programming to optimize Micro-Hydro Power Plants for generic river profiles," Renewable Energy, Elsevier, vol. 126(C), pages 905-914.
    3. Panupon Trairat & Sakda Somkun & Tanakorn Kaewchum & Tawat Suriwong & Pisit Maneechot & Teerapon Panpho & Wikarn Wansungnern & Sathit Banthuek & Bongkot Prasit & Tanongkiat Kiatsiriroat, 2023. "Grid Integration of Livestock Biogas Using Self-Excited Induction Generator and Spark-Ignition Engine," Energies, MDPI, vol. 16(13), pages 1-23, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laghari, J.A. & Mokhlis, H. & Bakar, A.H.A. & Mohammad, Hasmaini, 2013. "A comprehensive overview of new designs in the hydraulic, electrical equipments and controllers of mini hydro power plants making it cost effective technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 279-293.
    2. Jia Li & Xin Wang & Yue Wang & Wancheng Wang & Baibing Chen & Xiaolong Chen, 2020. "Effects of a Combination Impeller on the Flow Field and External Performance of an Aero-Fuel Centrifugal Pump," Energies, MDPI, vol. 13(4), pages 1-16, February.
    3. Jain, Sanjay V. & Patel, Rajesh N., 2014. "Investigations on pump running in turbine mode: A review of the state-of-the-art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 841-868.
    4. Bozorgi, A. & Javidpour, E. & Riasi, A. & Nourbakhsh, A., 2013. "Numerical and experimental study of using axial pump as turbine in Pico hydropower plants," Renewable Energy, Elsevier, vol. 53(C), pages 258-264.
    5. Mario Amelio & Silvio Barbarelli & Domenico Schinello, 2020. "Review of Methods Used for Selecting Pumps as Turbines (PATs) and Predicting Their Characteristic Curves," Energies, MDPI, vol. 13(23), pages 1-20, December.
    6. Pugliese, Francesco & De Paola, Francesco & Fontana, Nicola & Giugni, Maurizio & Marini, Gustavo, 2016. "Experimental characterization of two Pumps As Turbines for hydropower generation," Renewable Energy, Elsevier, vol. 99(C), pages 180-187.
    7. Morabito, Alessandro & Vagnoni, Elena & Di Matteo, Mariano & Hendrick, Patrick, 2021. "Numerical investigation on the volute cutwater for pumps running in turbine mode," Renewable Energy, Elsevier, vol. 175(C), pages 807-824.
    8. Mauro De Marchis & Barbara Milici & Roberto Volpe & Antonio Messineo, 2016. "Energy Saving in Water Distribution Network through Pump as Turbine Generators: Economic and Environmental Analysis," Energies, MDPI, vol. 9(11), pages 1-15, October.
    9. Huang, Si & Qiu, Guangqi & Su, Xianghui & Chen, Junrong & Zou, Wenlang, 2017. "Performance prediction of a centrifugal pump as turbine using rotor-volute matching principle," Renewable Energy, Elsevier, vol. 108(C), pages 64-71.
    10. Shojaeefard, Mohammad Hassan & Saremian, Salman, 2022. "Effects of impeller geometry modification on performance of pump as turbine in the urban water distribution network," Energy, Elsevier, vol. 255(C).
    11. Armando Carravetta & Giuseppe Del Giudice & Oreste Fecarotta & Helena M. Ramos, 2013. "PAT Design Strategy for Energy Recovery in Water Distribution Networks by Electrical Regulation," Energies, MDPI, vol. 6(1), pages 1-14, January.
    12. Kougias, Ioannis & Aggidis, George & Avellan, François & Deniz, Sabri & Lundin, Urban & Moro, Alberto & Muntean, Sebastian & Novara, Daniele & Pérez-Díaz, Juan Ignacio & Quaranta, Emanuele & Schild, P, 2019. "Analysis of emerging technologies in the hydropower sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    13. Wang, Tao & Kong, Fanyu & Xia, Bin & Bai, Yuxing & Wang, Chuan, 2017. "The method for determining blade inlet angle of special impeller using in turbine mode of centrifugal pump as turbine," Renewable Energy, Elsevier, vol. 109(C), pages 518-528.
    14. Fonseca, Jimeno A. & Schlueter, Arno, 2013. "Novel approach for decentralized energy supply and energy storage of tall buildings in Latin America based on renewable energy sources: Case study – Informal vertical community Torre David, Caracas – ," Energy, Elsevier, vol. 53(C), pages 93-105.
    15. Stefanizzi, M. & Filannino, D. & Capurso, T. & Camporeale, S.M. & Torresi, M., 2023. "Optimal hydraulic energy harvesting strategy for PaT installation in Water Distribution Networks," Applied Energy, Elsevier, vol. 344(C).
    16. Binama, Maxime & Su, Wen-Tao & Li, Xiao-Bin & Li, Feng-Chen & Wei, Xian-Zhu & An, Shi, 2017. "Investigation on pump as turbine (PAT) technical aspects for micro hydropower schemes: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 148-179.
    17. Wang, Tao & Wang, Chuan & Kong, Fanyu & Gou, Qiuqin & Yang, Sunsheng, 2017. "Theoretical, experimental, and numerical study of special impeller used in turbine mode of centrifugal pump as turbine," Energy, Elsevier, vol. 130(C), pages 473-485.
    18. Kamel, Rashad M., 2016. "Standalone micro grid power quality improvement using inertia and power reserves of the wind generation systems," Renewable Energy, Elsevier, vol. 97(C), pages 572-584.
    19. Krishna, V.B Murali & Sandeep, V. & Murthy, S.S. & Yadlapati, Kishore, 2022. "Experimental investigation on performance comparison of self excited induction generator and permanent magnet synchronous generator for small scale renewable energy applications," Renewable Energy, Elsevier, vol. 195(C), pages 431-441.
    20. Emma Frosina & Dario Buono & Adolfo Senatore, 2017. "A Performance Prediction Method for Pumps as Turbines (PAT) Using a Computational Fluid Dynamics (CFD) Modeling Approach," Energies, MDPI, vol. 10(1), pages 1-19, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:83:y:2015:i:c:p:1352-1361. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.