IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v78y2015icp538-549.html
   My bibliography  Save this article

Trivariate maximum entropy distribution of significant wave height, wind speed and relative direction

Author

Listed:
  • Dong, Sheng
  • Tao, Shanshan
  • Li, Xue
  • Soares, C. Guedes

Abstract

A trivariate maximum entropy distribution of significant wave height, wind speed and the relative direction is proposed here. In this joint distribution, all the marginal variables follow modified maximum entropy distributions, and they are combined by a correlation coefficient matrix based on the Nataf transformation. The methods of single extreme factors and of conditional probability are presented for the joint design of trivariate random variables. The corresponding sampling data about significant wave heights, wind speeds and the relative directions from a location in the North Atlantic is applied for statistical analysis, and the results show that the trivariate maximum entropy distribution is sufficiently good to fit the data, and method of conditional probability can reduce the design values efficiently.

Suggested Citation

  • Dong, Sheng & Tao, Shanshan & Li, Xue & Soares, C. Guedes, 2015. "Trivariate maximum entropy distribution of significant wave height, wind speed and relative direction," Renewable Energy, Elsevier, vol. 78(C), pages 538-549.
  • Handle: RePEc:eee:renene:v:78:y:2015:i:c:p:538-549
    DOI: 10.1016/j.renene.2015.01.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014811500035X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2015.01.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rusu, Liliana & Guedes Soares, C., 2012. "Wave energy assessments in the Azores islands," Renewable Energy, Elsevier, vol. 45(C), pages 183-196.
    2. Zhang, Jie & Chowdhury, Souma & Messac, Achille & Castillo, Luciano, 2013. "A Multivariate and Multimodal Wind Distribution model," Renewable Energy, Elsevier, vol. 51(C), pages 436-447.
    3. Rusu, Eugen & Guedes Soares, C., 2012. "Wave energy pattern around the Madeira Islands," Energy, Elsevier, vol. 45(1), pages 771-785.
    4. Portilla, Jesus & Sosa, Jeison & Cavaleri, Luigi, 2013. "Wave energy resources: Wave climate and exploitation," Renewable Energy, Elsevier, vol. 57(C), pages 594-605.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Seixas, M. & Melício, R. & Mendes, V.M.F. & Couto, C., 2016. "Blade pitch control malfunction simulation in a wind energy conversion system with MPC five-level converter," Renewable Energy, Elsevier, vol. 89(C), pages 339-350.
    2. Díaz, H. & Silva, D. & Bernardo, C. & Guedes Soares, C., 2023. "Micro sitting of floating wind turbines in a wind farm using a multi-criteria framework," Renewable Energy, Elsevier, vol. 204(C), pages 449-474.
    3. Sheng Dong & Chun-Shuo Jiao & Shan-Shan Tao, 2017. "Joint return probability analysis of wind speed and rainfall intensity in typhoon-affected sea area," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(3), pages 1193-1205, April.
    4. Ramezani, Mahyar & Choe, Do-Eun & Heydarpour, Khashayar & Koo, Bonjun, 2023. "Uncertainty models for the structural design of floating offshore wind turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Besio, G. & Mentaschi, L. & Mazzino, A., 2016. "Wave energy resource assessment in the Mediterranean Sea on the basis of a 35-year hindcast," Energy, Elsevier, vol. 94(C), pages 50-63.
    2. Sierra, Joan Pau & White, Adam & Mösso, Cesar & Mestres, Marc, 2017. "Assessment of the intra-annual and inter-annual variability of the wave energy resource in the Bay of Biscay (France)," Energy, Elsevier, vol. 141(C), pages 853-868.
    3. Dina Silva & Eugen Rusu & Carlos Guedes Soares, 2013. "Evaluation of Various Technologies for Wave Energy Conversion in the Portuguese Nearshore," Energies, MDPI, vol. 6(3), pages 1-21, March.
    4. Soomere, Tarmo & Eelsalu, Maris, 2014. "On the wave energy potential along the eastern Baltic Sea coast," Renewable Energy, Elsevier, vol. 71(C), pages 221-233.
    5. Veigas, M. & López, M. & Iglesias, G., 2014. "Assessing the optimal location for a shoreline wave energy converter," Applied Energy, Elsevier, vol. 132(C), pages 404-411.
    6. Appendini, Christian M. & Urbano-Latorre, Claudia P. & Figueroa, Bernardo & Dagua-Paz, Claudia J. & Torres-Freyermuth, Alec & Salles, Paulo, 2015. "Wave energy potential assessment in the Caribbean Low Level Jet using wave hindcast information," Applied Energy, Elsevier, vol. 137(C), pages 375-384.
    7. Sierra, J.P. & Martín, C. & Mösso, C. & Mestres, M. & Jebbad, R., 2016. "Wave energy potential along the Atlantic coast of Morocco," Renewable Energy, Elsevier, vol. 96(PA), pages 20-32.
    8. Liang, Bingchen & Fan, Fei & Liu, Fushun & Gao, Shanhong & Zuo, Hongyan, 2014. "22-Year wave energy hindcast for the China East Adjacent Seas," Renewable Energy, Elsevier, vol. 71(C), pages 200-207.
    9. Fadaeenejad, M. & Shamsipour, R. & Rokni, S.D. & Gomes, C., 2014. "New approaches in harnessing wave energy: With special attention to small islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 345-354.
    10. Bozzi, Silvia & Archetti, Renata & Passoni, Giuseppe, 2014. "Wave electricity production in Italian offshore: A preliminary investigation," Renewable Energy, Elsevier, vol. 62(C), pages 407-416.
    11. Bingölbali, Bilal & Jafali, Halid & Akpınar, Adem & Bekiroğlu, Serkan, 2020. "Wave energy potential and variability for the south west coasts of the Black Sea: The WEB-based wave energy atlas," Renewable Energy, Elsevier, vol. 154(C), pages 136-150.
    12. Sierra, J.P. & González-Marco, D. & Sospedra, J. & Gironella, X. & Mösso, C. & Sánchez-Arcilla, A., 2013. "Wave energy resource assessment in Lanzarote (Spain)," Renewable Energy, Elsevier, vol. 55(C), pages 480-489.
    13. Valentina Vannucchi & Lorenzo Cappietti, 2016. "Wave Energy Assessment and Performance Estimation of State of the Art Wave Energy Converters in Italian Hotspots," Sustainability, MDPI, vol. 8(12), pages 1-21, December.
    14. Eugen Rusu, 2014. "Evaluation of the Wave Energy Conversion Efficiency in Various Coastal Environments," Energies, MDPI, vol. 7(6), pages 1-17, June.
    15. Jonathan C. Pacaldo & Princess Hope T. Bilgera & Michael Lochinvar S. Abundo, 2022. "Nearshore Wave Energy Resource Assessment for Off-Grid Islands: A Case Study in Cuyo Island, Palawan, Philippines," Energies, MDPI, vol. 15(22), pages 1-29, November.
    16. Gonçalves, Marta & Martinho, Paulo & Guedes Soares, C., 2014. "Assessment of wave energy in the Canary Islands," Renewable Energy, Elsevier, vol. 68(C), pages 774-784.
    17. Rusu, Eugen & Onea, Florin, 2013. "Evaluation of the wind and wave energy along the Caspian Sea," Energy, Elsevier, vol. 50(C), pages 1-14.
    18. Sierra, J.P. & Mösso, C. & González-Marco, D., 2014. "Wave energy resource assessment in Menorca (Spain)," Renewable Energy, Elsevier, vol. 71(C), pages 51-60.
    19. Jahangir, Mohammad Hossein & Mazinani, Mehran, 2020. "Evaluation of the convertible offshore wave energy capacity of the southern strip of the Caspian Sea," Renewable Energy, Elsevier, vol. 152(C), pages 331-346.
    20. Kougias, Ioannis & Szabó, Sándor & Nikitas, Alexandros & Theodossiou, Nicolaos, 2019. "Sustainable energy modelling of non-interconnected Mediterranean islands," Renewable Energy, Elsevier, vol. 133(C), pages 930-940.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:78:y:2015:i:c:p:538-549. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.