IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v74y2015icp681-688.html
   My bibliography  Save this article

Frequency support capability of variable speed wind turbine based on electromagnetic coupler

Author

Listed:
  • You, Rui
  • Barahona, Braulio
  • Chai, Jianyun
  • Cutululis, Nicolaos A.

Abstract

In the variable speed wind turbine based on electromagnetic coupler (WT-EMC), a synchronous generator is directly coupled with grid. So like conventional power plants WT-EMC is able to support grid frequency inherently. But due to the reduced inertia of synchronous generator, its frequency support capability has to be enhanced. In this paper, the frequency support capability of WT-EMC is studied at three typical wind conditions and with two control strategies—droop control and inertial control to enhance its frequency support capability. The synchronous generator speed, more stable than the grid frequency which is the input signal for Type 3 and Type 4 wind turbine frequency support controller, is used for the calculation of WT-EMC supplementary torque command. The integrated simulation environment based on the aeroelastic code HAWC2 and software Matlab/Simulink is used to build a 2 MW WT-EMC model and study the frequency support capability of a wind farm consisting of WT-EMC.

Suggested Citation

  • You, Rui & Barahona, Braulio & Chai, Jianyun & Cutululis, Nicolaos A., 2015. "Frequency support capability of variable speed wind turbine based on electromagnetic coupler," Renewable Energy, Elsevier, vol. 74(C), pages 681-688.
  • Handle: RePEc:eee:renene:v:74:y:2015:i:c:p:681-688
    DOI: 10.1016/j.renene.2014.08.072
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148114005424
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2014.08.072?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hansen, Anca D. & Michalke, Gabriele, 2007. "Fault ride-through capability of DFIG wind turbines," Renewable Energy, Elsevier, vol. 32(9), pages 1594-1610.
    2. Shaltout, A. A. & El-Ramahi, A. F., 1995. "Maximum power tracking for a wind driven induction generator connected to a utility network," Applied Energy, Elsevier, vol. 52(2-3), pages 243-253.
    3. Rui You & Braulio Barahona & Jianyun Chai & Nicolaos A. Cutululis, 2013. "A Novel Wind Turbine Concept Based on an Electromagnetic Coupler and the Study of Its Fault Ride-through Capability," Energies, MDPI, vol. 6(11), pages 1-17, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ana Fernández-Guillamón & Guillermo Martínez-Lucas & Ángel Molina-García & Jose-Ignacio Sarasua, 2020. "Hybrid Wind–PV Frequency Control Strategy under Variable Weather Conditions in Isolated Power Systems," Sustainability, MDPI, vol. 12(18), pages 1-25, September.
    2. You, Rui & Barahona, Braulio & Chai, Jianyun & Cutululis, Nicolaos A. & Wu, Xinzhen, 2017. "Improvement of grid frequency dynamic characteristic with novel wind turbine based on electromagnetic coupler," Renewable Energy, Elsevier, vol. 113(C), pages 813-821.
    3. Fernández-Guillamón, Ana & Gómez-Lázaro, Emilio & Muljadi, Eduard & Molina-García, Ángel, 2019. "Power systems with high renewable energy sources: A review of inertia and frequency control strategies over time," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    4. You, Rui & Yuan, Xibo & Li, Xueqing, 2022. "A multi-rotor medium-voltage wind turbine system and its control strategy," Renewable Energy, Elsevier, vol. 186(C), pages 366-377.
    5. Ramirez, Dionisio & Martinez-Rodrigo, Fernando & de Pablo, Santiago & Carlos Herrero-de Lucas, Luis, 2017. "Assessment of a non linear current control technique applied to MMC-HVDC during grid disturbances," Renewable Energy, Elsevier, vol. 101(C), pages 945-963.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arthur Medeiros & Thales Ramos & José Tavares de Oliveira & Manoel F. Medeiros Júnior, 2020. "Direct Voltage Control of a Doubly Fed Induction Generator by Means of Optimal Strategy," Energies, MDPI, vol. 13(3), pages 1-28, February.
    2. Justo, Jackson John & Mwasilu, Francis & Jung, Jin-Woo, 2015. "Doubly-fed induction generator based wind turbines: A comprehensive review of fault ride-through strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 447-467.
    3. Ruiz de la Hermosa González-Carrato, Raúl & García Márquez, Fausto Pedro & Dimlaye, Vichaar, 2015. "Maintenance management of wind turbines structures via MFCs and wavelet transforms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 472-482.
    4. Eissa (SIEEE), M.M., 2015. "Protection techniques with renewable resources and smart grids—A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1645-1667.
    5. Ioannis D. Margaris & Anca D. Hansen & Poul Sørensen & Nikolaos D. Hatziargyriou, 2010. "Illustration of Modern Wind Turbine Ancillary Services," Energies, MDPI, vol. 3(6), pages 1-13, June.
    6. You, Rui & Yuan, Xibo & Li, Xueqing, 2022. "A multi-rotor medium-voltage wind turbine system and its control strategy," Renewable Energy, Elsevier, vol. 186(C), pages 366-377.
    7. Damdoum, Amel & Slama-Belkhodja, Ilhem & Pietrzak-David, Maria & Debbou, Mustapha, 2016. "Low voltage ride-through strategies for doubly fed induction machine pumped storage system under grid faults," Renewable Energy, Elsevier, vol. 95(C), pages 248-262.
    8. Juliano C. L. da Silva & Thales Ramos & Manoel F. Medeiros Júnior, 2021. "Modeling and Harmonic Impact Mitigation of Grid-Connected SCIG Driven by an Electromagnetic Frequency Regulator," Energies, MDPI, vol. 14(15), pages 1-21, July.
    9. Márquez, Fausto Pedro García & Pérez, Jesús María Pinar & Marugán, Alberto Pliego & Papaelias, Mayorkinos, 2016. "Identification of critical components of wind turbines using FTA over the time," Renewable Energy, Elsevier, vol. 87(P2), pages 869-883.
    10. Papaefthymiou, Stefanos V. & Lakiotis, Vasileios G. & Margaris, Ioannis D. & Papathanassiou, Stavros A., 2015. "Dynamic analysis of island systems with wind-pumped-storage hybrid power stations," Renewable Energy, Elsevier, vol. 74(C), pages 544-554.
    11. You, Rui & Barahona, Braulio & Chai, Jianyun & Cutululis, Nicolaos A. & Wu, Xinzhen, 2017. "Improvement of grid frequency dynamic characteristic with novel wind turbine based on electromagnetic coupler," Renewable Energy, Elsevier, vol. 113(C), pages 813-821.
    12. Carunaiselvane, C. & Chelliah, Thanga Raj, 2017. "Present trends and future prospects of asynchronous machines in renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1028-1041.
    13. Mitra, Arghya & Chatterjee, Dheeman, 2013. "A sensitivity based approach to assess the impacts of integration of variable speed wind farms on the transient stability of power systems," Renewable Energy, Elsevier, vol. 60(C), pages 662-671.
    14. Amer Saeed, M. & Mehroz Khan, Hafiz & Ashraf, Arslan & Aftab Qureshi, Suhail, 2018. "Analyzing effectiveness of LVRT techniques for DFIG wind turbine system and implementation of hybrid combination with control schemes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2487-2501.
    15. Helsen, Jan & Vanhollebeke, Frederik & Marrant, Ben & Vandepitte, Dirk & Desmet, Wim, 2011. "Multibody modelling of varying complexity for modal behaviour analysis of wind turbine gearboxes," Renewable Energy, Elsevier, vol. 36(11), pages 3098-3113.
    16. Li, H. & Zhao, B. & Yang, C. & Chen, H.W. & Chen, Z., 2011. "Analysis and estimation of transient stability for a grid-connected wind turbine with induction generator," Renewable Energy, Elsevier, vol. 36(5), pages 1469-1476.
    17. Fernández, R.D. & Battaiotto, P.E. & Mantz, R.J., 2008. "Wind farm non-linear control for damping electromechanical oscillations of power systems," Renewable Energy, Elsevier, vol. 33(10), pages 2258-2265.
    18. Ukashatu Abubakar & Saad Mekhilef & Hazlie Mokhlis & Mehdi Seyedmahmoudian & Ben Horan & Alex Stojcevski & Hussain Bassi & Muhyaddin Jamal Hosin Rawa, 2018. "Transient Faults in Wind Energy Conversion Systems: Analysis, Modelling Methodologies and Remedies," Energies, MDPI, vol. 11(9), pages 1-33, August.
    19. Mohd Zin, Abdullah Asuhaimi B. & Pesaran H.A., Mahmoud & Khairuddin, Azhar B. & Jahanshaloo, Leila & Shariati, Omid, 2013. "An overview on doubly fed induction generators′ controls and contributions to wind based electricity generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 692-708.
    20. Li, Canbing & Shi, Haiqing & Cao, Yijia & Wang, Jianhui & Kuang, Yonghong & Tan, Yi & Wei, Jing, 2015. "Comprehensive review of renewable energy curtailment and avoidance: A specific example in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1067-1079.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:74:y:2015:i:c:p:681-688. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.