IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v50y2013icp662-669.html

Modeling and validation of a cross flow turbine using free vortex model and a modified dynamic stall model

Author

Listed:
  • Urbina, Raul
  • Peterson, Michael L.
  • Kimball, Richard W.
  • deBree, Geoffrey S.
  • Cameron, Matthew P.

Abstract

This work details the implementation of a modified Beddoes Leishman model into a Free Vortex Method (FVM) to predict the performance of Darrieus turbines. The model uses Sheng's consideration of the reduced pitch rate influence on the dynamic loads over the foil and revised Kirchhoff flow equations to calculate lift and drag at extended ranges of angles of attack. A simple consideration of the Reynolds number cyclic variation on the blades characteristic of the Darrieus turbines is also implemented. Comparison with published and experimental data at a range of chord to radius ratio shows good agreement.

Suggested Citation

  • Urbina, Raul & Peterson, Michael L. & Kimball, Richard W. & deBree, Geoffrey S. & Cameron, Matthew P., 2013. "Modeling and validation of a cross flow turbine using free vortex model and a modified dynamic stall model," Renewable Energy, Elsevier, vol. 50(C), pages 662-669.
  • Handle: RePEc:eee:renene:v:50:y:2013:i:c:p:662-669
    DOI: 10.1016/j.renene.2012.08.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148112004806
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2012.08.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Khan, M.J. & Bhuyan, G. & Iqbal, M.T. & Quaicoe, J.E., 2009. "Hydrokinetic energy conversion systems and assessment of horizontal and vertical axis turbines for river and tidal applications: A technology status review," Applied Energy, Elsevier, vol. 86(10), pages 1823-1835, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Lu & Yeung, Ronald W., 2016. "On the performance of a micro-scale Bach-type turbine as predicted by discrete-vortex simulations," Applied Energy, Elsevier, vol. 183(C), pages 823-836.
    2. Epps, Brenden P. & Roesler, Bernard T. & Medvitz, Richard B. & Choo, Yeunun & McEntee, Jarlath, 2019. "A viscous vortex lattice method for analysis of cross-flow propellers and turbines," Renewable Energy, Elsevier, vol. 143(C), pages 1035-1052.
    3. Urbina, Raul & Epps, Brenden P. & Peterson, Michael L. & Kimball, Richard W., 2019. "A dynamic stall model for analysis of cross-flow turbines using discrete vortex methods," Renewable Energy, Elsevier, vol. 130(C), pages 1130-1145.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dou, Bingzheng & Guala, Michele & Lei, Liping & Zeng, Pan, 2019. "Wake model for horizontal-axis wind and hydrokinetic turbines in yawed conditions," Applied Energy, Elsevier, vol. 242(C), pages 1383-1395.
    2. Lee, Ju Hyun & Park, Sunho & Kim, Dong Hwan & Rhee, Shin Hyung & Kim, Moon-Chan, 2012. "Computational methods for performance analysis of horizontal axis tidal stream turbines," Applied Energy, Elsevier, vol. 98(C), pages 512-523.
    3. Lo, Jonathan C.C. & Thompson, Mark C. & Hourigan, Kerry & Zhao, Jisheng, 2024. "Order of magnitude increase in power from flow-induced vibrations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 205(C).
    4. Vermaak, Herman Jacobus & Kusakana, Kanzumba & Koko, Sandile Philip, 2014. "Status of micro-hydrokinetic river technology in rural applications: A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 625-633.
    5. Willis Awandu & Robin Ruff & Jens-Uwe Wiesemann & Boris Lehmann, 2022. "Status of Micro-Hydrokinetic River Technology Turbines Application for Rural Electrification in Africa," Energies, MDPI, vol. 15(23), pages 1-13, November.
    6. Hammar, Linus & Ehnberg, Jimmy & Mavume, Alberto & Francisco, Francisco & Molander, Sverker, 2012. "Simplified site-screening method for micro tidal current turbines applied in Mozambique," Renewable Energy, Elsevier, vol. 44(C), pages 414-422.
    7. Gaurier, Benoît & Davies, Peter & Deuff, Albert & Germain, Grégory, 2013. "Flume tank characterization of marine current turbine blade behaviour under current and wave loading," Renewable Energy, Elsevier, vol. 59(C), pages 1-12.
    8. Guney, Mukrimin Sevket, 2011. "Evaluation and measures to increase performance coefficient of hydrokinetic turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3669-3675.
    9. Nishi, Yasuyuki & Sato, Genki & Shiohara, Daishi & Inagaki, Terumi & Kikuchi, Norio, 2017. "Performance characteristics of axial flow hydraulic turbine with a collection device in free surface flow field," Renewable Energy, Elsevier, vol. 112(C), pages 53-62.
    10. Lo Brutto, Ottavio A. & Thiébot, Jérôme & Guillou, Sylvain S. & Gualous, Hamid, 2016. "A semi-analytic method to optimize tidal farm layouts – Application to the Alderney Race (Raz Blanchard), France," Applied Energy, Elsevier, vol. 183(C), pages 1168-1180.
    11. Hammar, Linus & Ehnberg, Jimmy & Mavume, Alberto & Cuamba, Boaventura C. & Molander, Sverker, 2012. "Renewable ocean energy in the Western Indian Ocean," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4938-4950.
    12. Kumar, Anuj & Saini, R.P., 2016. "Performance parameters of Savonius type hydrokinetic turbine – A Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 289-310.
    13. Zarzuelo, Carmen & López-Ruiz, Alejandro & Ortega-Sánchez, Miguel, 2018. "Impact of human interventions on tidal stream power: The case of Cádiz Bay," Energy, Elsevier, vol. 145(C), pages 88-104.
    14. Qian, Peng & Feng, Bo & Liu, Hao & Tian, Xiange & Si, Yulin & Zhang, Dahai, 2019. "Review on configuration and control methods of tidal current turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 125-139.
    15. Elbatran, A.H. & Yaakob, O.B. & Ahmed, Yasser M. & Jalal, M. Rajali, 2015. "Novel approach of bidirectional diffuser-augmented channels system for enhancing hydrokinetic power generation in channels," Renewable Energy, Elsevier, vol. 83(C), pages 809-819.
    16. Ferraiuolo, Roberta & Pugliese, Francesco & Álvarez Álvarez, Eduardo & Yosry, Ahmed Gharib & Giugni, Maurizio & Del Giudice, Giuseppe, 2024. "Experimental and numerical investigation of a three-blade horizontal axis hydrokinetic water turbine (HAHWT) in high blockage conditions," Renewable Energy, Elsevier, vol. 237(PA).
    17. Sun, Guang & Wang, Yong & Xie, Yudong & Lv, Kai & Sheng, Ruoyu, 2021. "Research on the effect of a movable gurney flap on energy extraction of oscillating hydrofoil," Energy, Elsevier, vol. 225(C).
    18. Wang, Wen-Quan & Yin, Rui & Yan, Yan, 2019. "Design and prediction hydrodynamic performance of horizontal axis micro-hydrokinetic river turbine," Renewable Energy, Elsevier, vol. 133(C), pages 91-102.
    19. Sleiti, Ahmad K., 2017. "Tidal power technology review with potential applications in Gulf Stream," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 435-441.
    20. Fontaine, A.A. & Straka, W.A. & Meyer, R.S. & Jonson, M.L. & Young, S.D. & Neary, V.S., 2020. "Performance and wake flow characterization of a 1:8.7-scale reference USDOE MHKF1 hydrokinetic turbine to establish a verification and validation test database," Renewable Energy, Elsevier, vol. 159(C), pages 451-467.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:50:y:2013:i:c:p:662-669. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.