IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v48y2012icp464-472.html
   My bibliography  Save this article

Measuring and modelling illuminance in the semi-arid Northeast of Brazil

Author

Listed:
  • Tíba, C.
  • Leal, S.S.

Abstract

Illuminance measurement do not make up a part of routine measurements in meteorological stations in Brazil, therefore, they are very rare. This information is important for evaluating the potential contribution of natural illumination in commercial buildings, which would significantly reduce the consumption of electric energy that is used for artificial illumination and refrigeration systems.

Suggested Citation

  • Tíba, C. & Leal, S.S., 2012. "Measuring and modelling illuminance in the semi-arid Northeast of Brazil," Renewable Energy, Elsevier, vol. 48(C), pages 464-472.
  • Handle: RePEc:eee:renene:v:48:y:2012:i:c:p:464-472
    DOI: 10.1016/j.renene.2012.05.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148112003503
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2012.05.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Singh, M.C. & Garg, S.N., 2010. "Illuminance estimation and daylighting energy savings for Indian regions," Renewable Energy, Elsevier, vol. 35(3), pages 703-711.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Beccali, M. & Bonomolo, M. & Ciulla, G. & Lo Brano, V., 2018. "Assessment of indoor illuminance and study on best photosensors' position for design and commissioning of Daylight Linked Control systems. A new method based on artificial neural networks," Energy, Elsevier, vol. 154(C), pages 466-476.
    2. Pattarapanitchai, S. & Janjai, S. & Tohsing, K. & Prathumsit, J., 2015. "A technique to map monthly average global illuminance from satellite data in the tropics using a simple semi-empirical model," Renewable Energy, Elsevier, vol. 74(C), pages 170-175.
    3. Das, Aparna & Paul, Saikat Kumar, 2015. "Artificial illumination during daytime in residential buildings: Factors, energy implications and future predictions," Applied Energy, Elsevier, vol. 158(C), pages 65-85.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chi, Fang'ai & Zhang, Jianxun & Li, Gaomei & Zhu, Zongzhou & Bart, Dewancker, 2019. "An investigation of the impact of Building Azimuth on energy consumption in sizhai traditional dwellings," Energy, Elsevier, vol. 180(C), pages 594-614.
    2. Das, Aparna & Paul, Saikat Kumar, 2015. "Artificial illumination during daytime in residential buildings: Factors, energy implications and future predictions," Applied Energy, Elsevier, vol. 158(C), pages 65-85.
    3. Janjai, S. & Prathumsit, J. & Buntoung, S. & Wattan, R. & Pattarapanitchai, S. & Masiri, I., 2014. "Modeling the luminous efficacy of direct and diffuse solar radiation using information on cloud, aerosol and water vapor in the tropics," Renewable Energy, Elsevier, vol. 66(C), pages 111-117.
    4. Alshaibani, K.A., 2017. "Classification Standard Skies: The use of horizontal sky illuminance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 387-392.
    5. Li, Danny H.W. & Chau, T.C. & Wan, Kevin K.W., 2014. "A review of the CIE general sky classification approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 563-574.
    6. Zomorodian, Zahra S. & Tahsildoost, Mohammad, 2019. "Assessing the effectiveness of dynamic metrics in predicting daylight availability and visual comfort in classrooms," Renewable Energy, Elsevier, vol. 134(C), pages 669-680.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:48:y:2012:i:c:p:464-472. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.