IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v39y2012i1p96-106.html
   My bibliography  Save this article

Dynamic modeling of a hybrid wind/solar/hydro microgrid in EMTP/ATP

Author

Listed:
  • Ye, Lin
  • Sun, Hai Bo
  • Song, Xu Ri
  • Li, Li Cheng

Abstract

Microgrids are LV or MV electric networks which utilize various distributed generators (DG) to serve local loads. In this paper, dynamic models of the main distributed generators including photovoltaic (PV) cell, wind turbine, hydro turbine as well as the equivalent power electronic interfaces, battery unit of PV and excitation system of hydro turbine have been made in ElectroMagnetic Transient Program/Alternative Transient Program (EMTP/ATP) software package. Control strategies based on active power/frequency and reactive power/voltage droops for the power control of the inverters have been also developed. Case studies have been carried out in a distribution network to investigate the dynamic behavior of the micro-sources in both steady state and fault scenarios. Simulation results verify the feasibility of the proposed models.

Suggested Citation

  • Ye, Lin & Sun, Hai Bo & Song, Xu Ri & Li, Li Cheng, 2012. "Dynamic modeling of a hybrid wind/solar/hydro microgrid in EMTP/ATP," Renewable Energy, Elsevier, vol. 39(1), pages 96-106.
  • Handle: RePEc:eee:renene:v:39:y:2012:i:1:p:96-106
    DOI: 10.1016/j.renene.2011.07.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148111004010
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2011.07.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. El Halabi, N. & García-Gracia, M. & Comech, M.P. & Oyarbide, E., 2012. "Distributed generation network design considering ground capacitive couplings," Renewable Energy, Elsevier, vol. 45(C), pages 119-127.
    2. Khalilpour, Kaveh Rajab & Vassallo, Anthony, 2016. "A generic framework for distributed multi-generation and multi-storage energy systems," Energy, Elsevier, vol. 114(C), pages 798-813.
    3. Ajibola Akinrinde & Andrew Swanson & Remy Tiako, 2019. "Dynamic Behavior of Wind Turbine Generator Configurations during Ferroresonant Conditions," Energies, MDPI, vol. 12(4), pages 1-16, February.
    4. Liu, W.Y. & Tang, B.P. & Han, J.G. & Lu, X.N. & Hu, N.N. & He, Z.Z., 2015. "The structure healthy condition monitoring and fault diagnosis methods in wind turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 466-472.
    5. A. Rahman, Hasimah & Majid, Md. Shah & Rezaee Jordehi, A. & Chin Kim, Gan & Hassan, Mohammad Yusri & O. Fadhl, Saeed, 2015. "Operation and control strategies of integrated distributed energy resources: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1412-1420.
    6. Isa, Normazlina Mat & Tan, Chee Wei & Yatim, A.H.M., 2018. "A comprehensive review of cogeneration system in a microgrid: A perspective from architecture and operating system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2236-2263.
    7. Zhang, Xinshuo & Huang, Weibin & Chen, Shijun & Xie, Diya & Liu, Dexu & Ma, Guangwen, 2020. "Grid–source coordinated dispatching based on heterogeneous energy hybrid power generation," Energy, Elsevier, vol. 205(C).
    8. Acuña, Luceny Guzmán & Padilla, Ricardo Vasquez & Mercado, Alcides Santander, 2017. "Measuring reliability of hybrid photovoltaic-wind energy systems: A new indicator," Renewable Energy, Elsevier, vol. 106(C), pages 68-77.
    9. Shivarama Krishna, K. & Sathish Kumar, K., 2015. "A review on hybrid renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 907-916.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:39:y:2012:i:1:p:96-106. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.