IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v36y2011i7p1993-2003.html
   My bibliography  Save this article

Development of an innovative code for the design of thermodynamic solar power plants part A: Code description and test case

Author

Listed:
  • Manzolini, Giampaolo
  • Giostri, Andrea
  • Saccilotto, Claudio
  • Silva, Paolo
  • Macchi, Ennio

Abstract

This paper presents an innovative code for predicting performances, as well as preliminary plant sizing and investment costs estimation, for different parabolic trough solar fields operating at nominal conditions. The code allows a preliminary design of the solar field lay-out, the sizing of the main components of the plant and the optimization of the steam cycle. The code, named PATTO (PArabolic Trough Thermodynamic Optimization), allows to separately calculate the thermal efficiency of parabolic trough systems in commerce as well as combination of components of various commercial systems, in order to exploit different technology solutions: combination of mirrors, receivers and supports. The code is flexible in terms of heat transfer fluid, temperature and pressure range. Regarding the power block, a conventional steam cycle with super-heater and re-heater sections and up to seven regenerative bleedings is adopted. In part A of the paper a detailed description of the code is presented, with calibration toward real applications and reference values found in literature. Part B reveals capability of the code in predicting performances of different solar technologies and their costs. Finally an innovative solar plant configuration is proposed.

Suggested Citation

  • Manzolini, Giampaolo & Giostri, Andrea & Saccilotto, Claudio & Silva, Paolo & Macchi, Ennio, 2011. "Development of an innovative code for the design of thermodynamic solar power plants part A: Code description and test case," Renewable Energy, Elsevier, vol. 36(7), pages 1993-2003.
  • Handle: RePEc:eee:renene:v:36:y:2011:i:7:p:1993-2003
    DOI: 10.1016/j.renene.2010.12.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148111000061
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2010.12.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adrian Gonzalez Gonzalez & J. Valeriano Alvarez Cabal & Vicente Rodríguez Montequin & Joaquín Villanueva Balsera & Rogelio Peón Menéndez, 2020. "CSP Quasi-Dynamic Performance Model Development for All Project Life Cycle Stages and Considering Operation Modes. Validation Using One Year Data," Energies, MDPI, vol. 14(1), pages 1-22, December.
    2. Pearce, Matthew & Shemfe, Mobolaji & Sansom, Christopher, 2016. "Techno-economic analysis of solar integrated hydrothermal liquefaction of microalgae," Applied Energy, Elsevier, vol. 166(C), pages 19-26.
    3. Binotti, Marco & Astolfi, Marco & Campanari, Stefano & Manzolini, Giampaolo & Silva, Paolo, 2017. "Preliminary assessment of sCO2 cycles for power generation in CSP solar tower plants," Applied Energy, Elsevier, vol. 204(C), pages 1007-1017.
    4. Islam, Md Tasbirul & Huda, Nazmul & Saidur, R., 2019. "Current energy mix and techno-economic analysis of concentrating solar power (CSP) technologies in Malaysia," Renewable Energy, Elsevier, vol. 140(C), pages 789-806.
    5. Cheng, Z.D. & He, Y.L. & Cui, F.Q. & Du, B.C. & Zheng, Z.J. & Xu, Y., 2014. "Comparative and sensitive analysis for parabolic trough solar collectors with a detailed Monte Carlo ray-tracing optical model," Applied Energy, Elsevier, vol. 115(C), pages 559-572.
    6. Pavlović, Tomislav M. & Radonjić, Ivana S. & Milosavljević, Dragana D. & Pantić, Lana S., 2012. "A review of concentrating solar power plants in the world and their potential use in Serbia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3891-3902.
    7. Fan, Man & Liang, Hongbo & You, Shijun & Zhang, Huan & Yin, Baoquan & Wu, Xiaoting, 2018. "Applicability analysis of the solar heating system with parabolic trough solar collectors in different regions of China," Applied Energy, Elsevier, vol. 221(C), pages 100-111.
    8. Francesco Witte & Mathias Hofmann & Julius Meier & Ilja Tuschy & George Tsatsaronis, 2022. "Generic and Open-Source Exergy Analysis—Extending the Simulation Framework TESPy," Energies, MDPI, vol. 15(11), pages 1-27, June.
    9. Zaaoumi, Anass & Asbik, Mohamed & Hafs, Hajar & Bah, Abdellah & Alaoui, Mohammed, 2021. "Thermal performance simulation analysis of solar field for parabolic trough collectors assigned for ambient conditions in Morocco," Renewable Energy, Elsevier, vol. 163(C), pages 1479-1494.
    10. Yılmaz, İbrahim Halil & Mwesigye, Aggrey, 2018. "Modeling, simulation and performance analysis of parabolic trough solar collectors: A comprehensive review," Applied Energy, Elsevier, vol. 225(C), pages 135-174.
    11. Glasnovic, Zvonimir & Margeta, Karmen & Premec, Krunoslav, 2016. "Could Key Engine, as a new open-source for RES technology development, start the third industrial revolution?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1194-1209.
    12. Hussain H. Al-Kayiem & Sanan T. Mohammad, 2019. "Potential of Renewable Energy Resources with an Emphasis on Solar Power in Iraq: An Outlook," Resources, MDPI, vol. 8(1), pages 1-20, February.
    13. De Luca, Fabrizio & Ferraro, Vittorio & Marinelli, Valerio, 2015. "On the performance of CSP oil-cooled plants, with and without heat storage in tanks of molten salts," Energy, Elsevier, vol. 83(C), pages 230-239.
    14. Babaelahi, Mojtaba & Mofidipour, Ehsan & Rafat, Ehsan, 2020. "Combined Energy-Exergy-Control (CEEC) analysis and multi-objective optimization of parabolic trough solar collector powered steam power plant," Energy, Elsevier, vol. 201(C).
    15. Nithyanandam, K. & Pitchumani, R., 2014. "Cost and performance analysis of concentrating solar power systems with integrated latent thermal energy storage," Energy, Elsevier, vol. 64(C), pages 793-810.
    16. Islam, Md Tasbirul & Huda, Nazmul & Abdullah, A.B. & Saidur, R., 2018. "A comprehensive review of state-of-the-art concentrating solar power (CSP) technologies: Current status and research trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 987-1018.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:36:y:2011:i:7:p:1993-2003. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.