IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v36y2011i2p642-647.html
   My bibliography  Save this article

Charge yield potential of indoor-operated solar cells incorporated into Product Integrated Photovoltaic (PIPV)

Author

Listed:
  • Reich, N.H.
  • van Sark, W.G.J.H.M.
  • Turkenburg, W.C.

Abstract

Solar cell performance parameters (open circuit voltage, short circuit current, fill factor and efficiency) are derived for different solar cell types for the irradiance range 0.1–1000W/m2. Also it is demonstrated how spectral mismatch factors for indoor lighting conditions are calculated. The presented methods and particular results may aid product designers in selecting appropriate solar cells for Product Integrated PV (PIPV) operated indoors and allow for more certainty in energy balance estimations of PIPV design concepts.

Suggested Citation

  • Reich, N.H. & van Sark, W.G.J.H.M. & Turkenburg, W.C., 2011. "Charge yield potential of indoor-operated solar cells incorporated into Product Integrated Photovoltaic (PIPV)," Renewable Energy, Elsevier, vol. 36(2), pages 642-647.
  • Handle: RePEc:eee:renene:v:36:y:2011:i:2:p:642-647
    DOI: 10.1016/j.renene.2010.07.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148110003423
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2010.07.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Randall, J.F. & Jacot, J., 2003. "Is AM1.5 applicable in practice? Modelling eight photovoltaic materials with respect to light intensity and two spectra," Renewable Energy, Elsevier, vol. 28(12), pages 1851-1864.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Chen & Xue, RuiPu & Li, Xu & Zhang, XiaoQing & Wu, ZhenYu, 2020. "Power performance of solar energy harvesting system under typical indoor light sources," Renewable Energy, Elsevier, vol. 161(C), pages 836-845.
    2. Sacco, Adriano & Rolle, Lidia & Scaltrito, Luciano & Tresso, Elena & Pirri, Candido Fabrizio, 2013. "Characterization of photovoltaic modules for low-power indoor application," Applied Energy, Elsevier, vol. 102(C), pages 1295-1302.
    3. Lizin, Sebastien & Leroy, Julie & Delvenne, Catherine & Dijk, Marc & De Schepper, Ellen & Van Passel, Steven, 2013. "A patent landscape analysis for organic photovoltaic solar cells: Identifying the technology's development phase," Renewable Energy, Elsevier, vol. 57(C), pages 5-11.
    4. De Rossi, Francesca & Pontecorvo, Tadeo & Brown, Thomas M., 2015. "Characterization of photovoltaic devices for indoor light harvesting and customization of flexible dye solar cells to deliver superior efficiency under artificial lighting," Applied Energy, Elsevier, vol. 156(C), pages 413-422.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Chen & Xue, RuiPu & Li, Xu & Zhang, XiaoQing & Wu, ZhenYu, 2020. "Power performance of solar energy harvesting system under typical indoor light sources," Renewable Energy, Elsevier, vol. 161(C), pages 836-845.
    2. Russo, Johnny & Ray, William & Litz, Marc S., 2017. "Low light illumination study on commercially available homojunction photovoltaic cells," Applied Energy, Elsevier, vol. 191(C), pages 10-21.
    3. Cannavale, Alessandro & Hörantner, Maximilian & Eperon, Giles E. & Snaith, Henry J. & Fiorito, Francesco & Ayr, Ubaldo & Martellotta, Francesco, 2017. "Building integration of semitransparent perovskite-based solar cells: Energy performance and visual comfort assessment," Applied Energy, Elsevier, vol. 194(C), pages 94-107.
    4. Jakica, Nebojsa, 2018. "State-of-the-art review of solar design tools and methods for assessing daylighting and solar potential for building-integrated photovoltaics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1296-1328.
    5. Bertrand, Cédric & Housmans, Caroline & Leloux, Jonathan & Journée, Michel, 2018. "Solar irradiation from the energy production of residential PV systems," Renewable Energy, Elsevier, vol. 125(C), pages 306-318.
    6. Lucas Deotti & Ivo Silva Júnior & Leonardo Honório & André Marcato, 2021. "Empirical Models Applied to Distributed Energy Resources—An Analysis in the Light of Regulatory Aspects," Energies, MDPI, vol. 14(2), pages 1-32, January.
    7. de la Parra, I. & Muñoz, M. & Lorenzo, E. & García, M. & Marcos, J. & Martínez-Moreno, F., 2017. "PV performance modelling: A review in the light of quality assurance for large PV plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 780-797.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:36:y:2011:i:2:p:642-647. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.