IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v36y2011i10p2615-2622.html
   My bibliography  Save this article

Environmental effects on a grid connected 900 W photovoltaic thin-film amorphous silicon system

Author

Listed:
  • Al Hanai, Tuka
  • Hashim, Rehab Bani
  • El Chaar, Lana
  • Lamont, Lisa Ann

Abstract

This study analyses the performance of a small scale, grid connected, thin-film, amorphous silicon photovoltaic system located in Abu Dhabi (United Arab Emirates). It was observed that due to the sandy environment dust accumulated relatively quickly over a short period of time, significantly degrading the performance of the system. Relating to this local natural phenomenon, the amount of solar irradiance the system was exposed to shows the greatest effect on performance. The effect of ambient temperature and humidity were considered and displayed slight effects on the output of the system, and it was observed that a significant loss in power occurred through the inverter. Also observed in reducing the performance of the system was the Staebler-Wronski effect, a phenomenon inherent to amorphous silicon, which reduces the overall output of the system after exposure to light over an extended period of time.

Suggested Citation

  • Al Hanai, Tuka & Hashim, Rehab Bani & El Chaar, Lana & Lamont, Lisa Ann, 2011. "Environmental effects on a grid connected 900 W photovoltaic thin-film amorphous silicon system," Renewable Energy, Elsevier, vol. 36(10), pages 2615-2622.
  • Handle: RePEc:eee:renene:v:36:y:2011:i:10:p:2615-2622
    DOI: 10.1016/j.renene.2010.06.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148110002661
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2010.06.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xueqing Liu & Song Yue & Luyi Lu & Jianlan Li, 2019. "Study on Dust Deposition Mechanics on Solar Mirrors in a Solar Power Plant," Energies, MDPI, vol. 12(23), pages 1-18, November.
    2. Mateo, C. & Hernández-Fenollosa, M.A. & Montero, Á. & Seguí-Chilet, S., 2018. "Analysis of initial stabilization of cell efficiency in amorphous silicon photovoltaic modules under real outdoor conditions," Renewable Energy, Elsevier, vol. 120(C), pages 114-125.
    3. Abdulsalam S. Alghamdi & AbuBakr S. Bahaj & Luke S. Blunden & Yue Wu, 2019. "Dust Removal from Solar PV Modules by Automated Cleaning Systems," Energies, MDPI, vol. 12(15), pages 1-21, July.
    4. Ramgolam, Yatindra Kumar & Soyjaudah, Krishnaraj Madhavjee Sunjiv, 2017. "Holistic performance appraisal of a photovoltaic system," Renewable Energy, Elsevier, vol. 109(C), pages 440-448.
    5. Pankaj Borah & Leonardo Micheli & Nabin Sarmah, 2023. "Analysis of Soiling Loss in Photovoltaic Modules: A Review of the Impact of Atmospheric Parameters, Soil Properties, and Mitigation Approaches," Sustainability, MDPI, vol. 15(24), pages 1-26, December.
    6. Hammad, Bashar & Al–Abed, Mohammad & Al–Ghandoor, Ahmed & Al–Sardeah, Ali & Al–Bashir, Adnan, 2018. "Modeling and analysis of dust and temperature effects on photovoltaic systems’ performance and optimal cleaning frequency: Jordan case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2218-2234.
    7. Jamil, M. & Ahmad, Farzana & Jeon, Y.J., 2016. "Renewable energy technologies adopted by the UAE: Prospects and challenges – A comprehensive overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1181-1194.
    8. Dida, Mustapha & Boughali, Slimane & Bechki, Djamel & Bouguettaia, Hamza, 2020. "Output power loss of crystalline silicon photovoltaic modules due to dust accumulation in Saharan environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:36:y:2011:i:10:p:2615-2622. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.