IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v34y2009i7p1700-1708.html
   My bibliography  Save this article

Design and performance of the solar-powered floor heating system in a green building

Author

Listed:
  • Zhai, X.Q.
  • Yang, J.R.
  • Wang, R.Z.

Abstract

In the green building of Shanghai Research Institute of Building Science, the evacuated tubular solar collectors with a total area of 150m2 were installed to provide heating for the covered area of 460m2. The floor heating coil pipes were made of high-quality pure copper with the dimension of Φ 12×0.7mm. Under typical weather condition of Shanghai, the average heating capacity was 25.04kW during the working hours from 9:00 to 17:00, which was sufficient to keep indoor thermal environment. The average electric COP of the floor heating system was 19.76 during the system operation. Compared with the widely used air-source heat pump heating systems with the electric COP of 3.5 in Shanghai, the solar-powered floor heating system shows great potential in energy conservation in winter. With respect to the whole heating period, the solar fraction was 56%. According to the performance analysis of the system with ambient parameters, it was observed that the system performance could be greatly enhanced with the increase of daily solar insolation. However, the system performance varied slightly with average ambient temperature. Compared with average ambient temperature, daily solar insolation had a more distinct influence on the performance of the solar-powered floor heating system.

Suggested Citation

  • Zhai, X.Q. & Yang, J.R. & Wang, R.Z., 2009. "Design and performance of the solar-powered floor heating system in a green building," Renewable Energy, Elsevier, vol. 34(7), pages 1700-1708.
  • Handle: RePEc:eee:renene:v:34:y:2009:i:7:p:1700-1708
    DOI: 10.1016/j.renene.2008.11.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148109000147
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2008.11.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Badran, Ali A. & Hamdan, Mohammad A., 2004. "Comparative study for under-floor heating using solar collectors or solar ponds," Applied Energy, Elsevier, vol. 77(1), pages 107-117, January.
    2. Alkhalaileh, M.T. & Atieh, K.a. & Nasser, N.G. & Jubran, B.a., 1999. "Modeling and simulation of solar pond floor heating system," Renewable Energy, Elsevier, vol. 18(1), pages 1-14.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Caliskan, Hakan, 2015. "Thermodynamic and environmental analyses of biomass, solar and electrical energy options based building heating applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1016-1034.
    2. Abdelkader Laafer & Djaffar Semmar & Abdelkader Hamid & Mahmoud Bourouis, 2021. "Thermal and Surface Radiosity Analysis of an Underfloor Heating System in a Bioclimatic Habitat," Energies, MDPI, vol. 14(13), pages 1-17, June.
    3. Karimi, Mohammad Sadjad & Fazelpour, Farivar & Rosen, Marc A. & Shams, Mehrzad, 2019. "Comparative study of solar-powered underfloor heating system performance in distinctive climates," Renewable Energy, Elsevier, vol. 130(C), pages 524-535.
    4. Shafieian, Abdellah & Khiadani, Mehdi & Nosrati, Ataollah, 2018. "A review of latest developments, progress, and applications of heat pipe solar collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 273-304.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, R.Z. & Zhai, X.Q., 2010. "Development of solar thermal technologies in China," Energy, Elsevier, vol. 35(11), pages 4407-4416.
    2. Ding, L.C. & Akbarzadeh, A. & Tan, L., 2018. "A review of power generation with thermoelectric system and its alternative with solar ponds," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 799-812.
    3. Kurt, Hüseyin & Ozkaymak, Mehmet & Binark, A. Korhan, 2006. "Experimental and numerical analysis of sodium-carbonate salt gradient solar-pond performance under simulated solar-radiation," Applied Energy, Elsevier, vol. 83(4), pages 324-342, April.
    4. Velmurugan, V. & Srithar, K., 2008. "Prospects and scopes of solar pond: A detailed review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(8), pages 2253-2263, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:34:y:2009:i:7:p:1700-1708. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.