IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v244y2025ics0960148125004124.html
   My bibliography  Save this article

A novel spectrally selective crystalline silicon cell for reducing the radiation heat loss of photovoltaic/thermal collector

Author

Listed:
  • Hu, Kongfu
  • Chen, Ken
  • Chan, Siyan
  • Pei, Yu
  • Zhao, Bin
  • Pei, Gang

Abstract

Photovoltaic/thermal (PV/T) hybrid systems are an advanced solar technology that simultaneously produces electricity and heat, enhancing solar energy efficiency and supporting carbon neutrality goals. Nevertheless, the high mid-infrared emissivity (∼0.9) of crystalline silicon cells, results in significant radiative heat loss, thus limiting the thermal performance. The textured structure of C-Si cells further amplifies mid-infrared emissivity, and applying a low-emissivity coating directly onto the textured surface fails to achieve the desired spectral selectivity. To address this issue, we propose a spectrally selective coating structure for C-Si solar cells, wherein the textured surface is filled with PDMS and a low-emissivity coating is applied to the resultant flat surface. Taking the IBC cell as an example, achieve a high solar absorptivity (α = 0.9) and a reduced mid-infrared emissivity (ε = 0.34). We simulated the performance of the Low-e PV/T system using TEC fins and conducted indoor experimental tests. Experimental results demonstrate that the electrical efficiency of the low-emissivity cell decreases by 1.74 % compared to the conventional cell, while the thermal efficiency of the low-emissivity glazed PV/T collector is relatively increased by 16.24%–51.73 % in the operating temperature range of 60–80 °C. Furthermore, annual simulations using TRNSYS modeling reveal that the low-emissivity glazed PV/T collector exhibits a higher heat yield and superior overall solar utilization efficiency, outperforming conventional glazed PV/T collectors in terms of energy conservation.

Suggested Citation

  • Hu, Kongfu & Chen, Ken & Chan, Siyan & Pei, Yu & Zhao, Bin & Pei, Gang, 2025. "A novel spectrally selective crystalline silicon cell for reducing the radiation heat loss of photovoltaic/thermal collector," Renewable Energy, Elsevier, vol. 244(C).
  • Handle: RePEc:eee:renene:v:244:y:2025:i:c:s0960148125004124
    DOI: 10.1016/j.renene.2025.122750
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148125004124
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2025.122750?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Zondag, H.A., 2008. "Flat-plate PV-Thermal collectors and systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(4), pages 891-959, May.
    2. Woon, Kok Sin & Phuang, Zhen Xin & Taler, Jan & Varbanov, Petar Sabev & Chong, Cheng Tung & Klemeš, Jiří Jaromír & Lee, Chew Tin, 2023. "Recent advances in urban green energy development towards carbon emissions neutrality," Energy, Elsevier, vol. 267(C).
    3. Kannan, Nadarajah & Vakeesan, Divagar, 2016. "Solar energy for future world: - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1092-1105.
    4. Shen, Yongting & Hocksun Kwan, Trevor & Yang, Hongxing, 2022. "Parametric and global seasonal analysis of a hybrid PV/T-CCA system for combined CO2 capture and power generation," Applied Energy, Elsevier, vol. 311(C).
    5. Chao Zhou & Ruobing Liang & Jili Zhang, 2017. "Optimization Design Method and Experimental Validation of a Solar PVT Cogeneration System Based on Building Energy Demand," Energies, MDPI, vol. 10(9), pages 1-20, August.
    6. Al-Waeli, Ali H.A. & Sopian, K. & Kazem, Hussein A. & Chaichan, Miqdam T., 2017. "Photovoltaic/Thermal (PV/T) systems: Status and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 109-130.
    7. Alobaid, Mohammad & Hughes, Ben & Calautit, John Kaiser & O’Connor, Dominic & Heyes, Andrew, 2017. "A review of solar driven absorption cooling with photovoltaic thermal systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 728-742.
    8. Garud, Kunal Sandip & Lee, Moo-Yeon, 2022. "Thermodynamic, environmental and economic analyses of photovoltaic/thermal-thermoelectric generator system using single and hybrid particle nanofluids," Energy, Elsevier, vol. 255(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jia, Yuting & Alva, Guruprasad & Fang, Guiyin, 2019. "Development and applications of photovoltaic–thermal systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 249-265.
    2. Youngjin Choi & Masayuki Mae & Hyunwoo Roh & Wanghee Cho, 2019. "Annual Heating and Hot Water Load Reduction Effect of Air-Based Solar Heating System Using Thermal Simulation," Energies, MDPI, vol. 12(6), pages 1-17, March.
    3. You, Tian & Wu, Wei & Yang, Hongxing & Liu, Jiankun & Li, Xianting, 2021. "Hybrid photovoltaic/thermal and ground source heat pump: Review and perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    4. Das, Dudul & Kalita, Pankaj & Roy, Omkar, 2018. "Flat plate hybrid photovoltaic- thermal (PV/T) system: A review on design and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 84(C), pages 111-130.
    5. Dang, Gangqiang & Ren, Xiao & Gong, Liang & Zhang, Yifan & Liang, Jingrui & Li, Jing & Pei, Gang, 2025. "A seasonally efficient cogeneration system based on medium-temperature PV/T-ORC," Energy, Elsevier, vol. 316(C).
    6. Chemisana, D. & Fernandez, E.F. & Riverola, A. & Moreno, A., 2018. "Fluid-based spectrally selective filters for direct immersed PVT solar systems in building applications," Renewable Energy, Elsevier, vol. 123(C), pages 263-272.
    7. Shuhao Chang & Qiancheng Wang & Haihua Hu & Zijian Ding & Hansen Guo, 2018. "An NNwC MPPT-Based Energy Supply Solution for Sensor Nodes in Buildings and Its Feasibility Study," Energies, MDPI, vol. 12(1), pages 1-20, December.
    8. Shenhua Liu & Deheng Xiao, 2024. "Can Big Data Comprehensive Pilot Zone Promote Low-Carbon Urban Development? Evidence from China," Sustainability, MDPI, vol. 17(1), pages 1-15, December.
    9. Calise, Francesco & Cipollina, Andrea & Dentice d’Accadia, Massimo & Piacentino, Antonio, 2014. "A novel renewable polygeneration system for a small Mediterranean volcanic island for the combined production of energy and water: Dynamic simulation and economic assessment," Applied Energy, Elsevier, vol. 135(C), pages 675-693.
    10. Nabavi-Pelesaraei, Ashkan & Azadi, Hossein & Van Passel, Steven & Saber, Zahra & Hosseini-Fashami, Fatemeh & Mostashari-Rad, Fatemeh & Ghasemi-Mobtaker, Hassan, 2021. "Prospects of solar systems in production chain of sunflower oil using cold press method with concentrating energy and life cycle assessment," Energy, Elsevier, vol. 223(C).
    11. Han, Kedong & Ji, Jie & Cai, Jingyong & Gao, Yuhe & Zhang, Feng & Uddin, Md Muin & Song, Zhiying, 2021. "Experimental and numerical investigation on a novel photovoltaic direct-driven ice storage air-conditioning system," Renewable Energy, Elsevier, vol. 172(C), pages 514-528.
    12. Zhang, Kun & Cao, Yiyi & Liu, Zhouyi & Zhou, Qi & Qu, Shen & Wei, Yi-Ming, 2024. "Allocation of carbon emission responsibility among Chinese cities guided by economic welfare gains: Case study based on multi-regional input-output analysis," Applied Energy, Elsevier, vol. 376(PA).
    13. Abhnil Amtesh Prasad & Merlinde Kay, 2020. "Assessment of Simulated Solar Irradiance on Days of High Intermittency Using WRF-Solar," Energies, MDPI, vol. 13(2), pages 1-22, January.
    14. Xiao, Zenan & Huang, Xiaoqiao & Liu, Jun & Li, Chengli & Tai, Yonghang, 2023. "A novel method based on time series ensemble model for hourly photovoltaic power prediction," Energy, Elsevier, vol. 276(C).
    15. Chen, Haifei & Li, Guiqiang & Zhong, Yang & Wang, Yunjie & Cai, Baorui & Yang, Jie & Badiei, Ali & Zhang, Yang, 2021. "Exergy analysis of a high concentration photovoltaic and thermal system for comprehensive use of heat and electricity," Energy, Elsevier, vol. 225(C).
    16. Mostafa A. Rushdi & Shigeo Yoshida & Koichi Watanabe & Yuji Ohya & Amr Ismaiel, 2024. "Deep Learning Approaches for Power Prediction in Wind–Solar Tower Systems," Energies, MDPI, vol. 17(15), pages 1-23, July.
    17. Golonis, Chrysanthos & Skiadopoulos, Anastasios & Manolakos, Dimitris & Kosmadakis, George, 2021. "Assessment of the performance of a low-temperature Organic Rankine Cycle engine coupled with a concentrating PV-Thermal system," Renewable Energy, Elsevier, vol. 179(C), pages 1085-1097.
    18. Ju, Xing & Abd El-Samie, Mostafa M. & Xu, Chao & Yu, Hangyu & Pan, Xinyu & Yang, Yongping, 2020. "A fully coupled numerical simulation of a hybrid concentrated photovoltaic/thermal system that employs a therminol VP-1 based nanofluid as a spectral beam filter," Applied Energy, Elsevier, vol. 264(C).
    19. Juanicó, Luis E. & Di Lalla, Nicolás & González, Alejandro D., 2017. "Full thermal-hydraulic and solar modeling to study low-cost solar collectors based on a single long LDPE hose," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 187-195.
    20. Moritz Wegener & Antonio Isalgué & Anders Malmquist & Andrew Martin, 2019. "3E-Analysis of a Bio-Solar CCHP System for the Andaman Islands, India—A Case Study," Energies, MDPI, vol. 12(6), pages 1-19, March.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:244:y:2025:i:c:s0960148125004124. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.