IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v242y2025ics0960148125000990.html
   My bibliography  Save this article

Implications of carbon management with forest plantation on understocked, degraded and bare forests: Simulated long-term dynamics between timber production and carbon sequestration

Author

Listed:
  • Baskent, Emin Zeki
  • Kašpar, Jan
  • Baskent, Hümeyra

Abstract

Forest plantations hold substantial promise for effective management of biomass through forestation of understocked forests to achieve optimal carbon management. This study investigates active forest management to explore trade-offs between timber and carbon sequestration by analyzing four management scenarios with ETÇAP model in a forest area in Türkiye, adhering to national management guidelines. The results highlight the significance of selecting appropriate tree species and plantation levels to harmonize ecosystem services. Plantations with higher amounts offer greater opportunities for harvested volume and carbon stock. Black pine appeared as a superior performer of carbon stock (204.98 Mg ha−1) compared to other tree species, while hardwood species enhance soil carbon and habitat. The living and litter carbon showed substantial increases, surpassing 100 Mg ha−1 across all strategies. Cumulative carbon and balance variations stem mainly from forest growth, with softwood plantations achieving the highest increment of 1.9–5.6 m³ ha⁻1 year⁻1 by 2110. The study highlighted the critical role of forest soil and living carbon in driving carbon dynamics. It is essential to formulate appropriate management strategies when choosing tree species and their planting rates for climate-smart forestry, pinpointing a notable limitation that the carbon stock is calculated regardless of variations in tree sizes.

Suggested Citation

  • Baskent, Emin Zeki & Kašpar, Jan & Baskent, Hümeyra, 2025. "Implications of carbon management with forest plantation on understocked, degraded and bare forests: Simulated long-term dynamics between timber production and carbon sequestration," Renewable Energy, Elsevier, vol. 242(C).
  • Handle: RePEc:eee:renene:v:242:y:2025:i:c:s0960148125000990
    DOI: 10.1016/j.renene.2025.122437
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148125000990
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2025.122437?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Gintautas Mozgeris & Vaiva Kazanavičiūtė & Daiva Juknelienė, 2021. "Does Aiming for Long-Term Non-Decreasing Flow of Timber Secure Carbon Accumulation: A Lithuanian Forestry Case," Sustainability, MDPI, vol. 13(5), pages 1-24, March.
    2. Triviño, María & Juutinen, Artti & Mazziotta, Adriano & Miettinen, Kaisa & Podkopaev, Dmitry & Reunanen, Pasi & Mönkkönen, Mikko, 2015. "Managing a boreal forest landscape for providing timber, storing and sequestering carbon," Ecosystem Services, Elsevier, vol. 14(C), pages 179-189.
    3. Morán-Ordóñez, Alejandra & Ameztegui, Aitor & De Cáceres, Miquel & de-Miguel, Sergio & Lefèvre, François & Brotons, Lluís & Coll, Lluís, 2020. "Future trade-offs and synergies among ecosystem services in Mediterranean forests under global change scenarios," Ecosystem Services, Elsevier, vol. 45(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Renata Dagiliūtė & Vaiva Kazanavičiūtė, 2025. "Climate Change Mitigation vs. Renewable Energy Consumption and Biomass Demand," Land, MDPI, vol. 14(7), pages 1-16, June.
    2. Wei Shi & Fuwei Qiao & Liang Zhou, 2021. "Identification of Ecological Risk Zoning on Qinghai-Tibet Plateau from the Perspective of Ecosystem Service Supply and Demand," Sustainability, MDPI, vol. 13(10), pages 1-17, May.
    3. Kolo, Horst & Kindu, Mengistie & Knoke, Thomas, 2020. "Optimizing forest management for timber production, carbon sequestration and groundwater recharge," Ecosystem Services, Elsevier, vol. 44(C).
    4. Angelstam, Per & Elbakidze, Marine & Axelsson, Robert & Khoroshev, Alexander & Pedroli, Bas & Tysiachniouk, Maria & Zabubenin, Evgeny, 2019. "Model forests in Russia as landscape approach: Demonstration projects or initiatives for learning towards sustainable forest management?," Forest Policy and Economics, Elsevier, vol. 101(C), pages 96-110.
    5. Richards, Daniel Rex & Lavorel, Sandra, 2022. "Integrating social media data and machine learning to analyse scenarios of landscape appreciation," Ecosystem Services, Elsevier, vol. 55(C).
    6. Juutinen, Artti & Tolvanen, Anne & Saarimaa, Miia & Ojanen, Paavo & Sarkkola, Sakari & Ahtikoski, Anssi & Haikarainen, Soili & Karhu, Jouni & Haara, Arto & Nieminen, Mika & Penttilä, Timo & Nousiainen, 2020. "Cost-effective land-use options of drained peatlands– integrated biophysical-economic modeling approach," Ecological Economics, Elsevier, vol. 175(C).
    7. Orsi, Francesco & Ciolli, Marco & Primmer, Eeva & Varumo, Liisa & Geneletti, Davide, 2020. "Mapping hotspots and bundles of forest ecosystem services across the European Union," Land Use Policy, Elsevier, vol. 99(C).
    8. Jinjin Wu & Xueru Jin & Zhe Feng & Tianqian Chen & Chenxu Wang & Dingrao Feng & Jiaqi Lv, 2021. "Relationship of Ecosystem Services in the Beijing–Tianjin–Hebei Region Based on the Production Possibility Frontier," Land, MDPI, vol. 10(8), pages 1-21, August.
    9. Louda, Jiří & Dubová, Lenka & Špaček, Martin & Brnkaľáková, Stanislava & Kluvánková, Tatiana, 2023. "Factors affecting governance innovations for ecosystem services provision: Insights from two self-organized forest communities in Czechia and Slovakia," Ecosystem Services, Elsevier, vol. 59(C).
    10. Lessa Derci Augustynczik, Andrey & Yousefpour, Rasoul, 2021. "Assessing the synergistic value of ecosystem services in European beech forests," Ecosystem Services, Elsevier, vol. 49(C).
    11. Eyvindson, Kyle & Repo, Anna & Mönkkönen, Mikko, 2018. "Mitigating forest biodiversity and ecosystem service losses in the era of bio-based economy," Forest Policy and Economics, Elsevier, vol. 92(C), pages 119-127.
    12. Dymond, Caren Christine & Giles-Hansen, Krysta & Asante, Patrick, 2020. "The forest mitigation-adaptation nexus: Economic benefits of novel planting regimes," Forest Policy and Economics, Elsevier, vol. 113(C).
    13. Hallberg-Sramek, Isabella & Nordström, Eva-Maria & Priebe, Janina & Reimerson, Elsa & Mårald, Erland & Nordin, Annika, 2023. "Combining scientific and local knowledge improves evaluating future scenarios of forest ecosystem services," Ecosystem Services, Elsevier, vol. 60(C).
    14. Toraño Caicoya, Astor & Vergarechea, Marta & Blattert, Clemens & Klein, Julian & Eyvindson, Kyle & Burgas, Daniel & Snäll, Tord & Mönkkönen, Mikko & Astrup, Rasmus & Di Fulvio, Fulvio & Forsell, Nikla, 2023. "What drives forest multifunctionality in central and northern Europe? Exploring the interplay of management, climate, and policies," Ecosystem Services, Elsevier, vol. 64(C).
    15. van den Belt, Marjan & Stevens, Sharon M., 2016. "Transformative agenda, or lost in the translation? A review of top-cited articles in the first four years of Ecosystem Services," Ecosystem Services, Elsevier, vol. 22(PA), pages 60-72.
    16. Mäntymaa, Erkki & Artell, Janne & Forsman, Jukka T. & Juutinen, Artti, 2023. "Is it more important to increase carbon sequestration, biodiversity, or jobs? A case study of citizens' preferences for forest policy in Finland," Forest Policy and Economics, Elsevier, vol. 154(C).
    17. Taboada, Angela & García-Llamas, Paula & Fernández-Guisuraga, José Manuel & Calvo, Leonor, 2021. "Wildfires impact on ecosystem service delivery in fire-prone maritime pine-dominated forests," Ecosystem Services, Elsevier, vol. 50(C).
    18. Degnet, Mohammed B. & Hansson, Helena & Hoogstra-Klein, Marjanke A. & Roos, Anders, 2022. "The role of personal values and personality traits in environmental concern of non-industrial private forest owners in Sweden," Forest Policy and Economics, Elsevier, vol. 141(C).
    19. Brander, L.M. & Tankha, S. & Sovann, C. & Sanadiradze, G. & Zazanashvili, N. & Kharazishvili, D. & Memiadze, N. & Osepashvili, I. & Beruchashvili, G. & Arobelidze, N., 2018. "Mapping the economic value of landslide regulation by forests," Ecosystem Services, Elsevier, vol. 32(PA), pages 101-109.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:242:y:2025:i:c:s0960148125000990. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.