IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v241y2025ics0960148125000084.html
   My bibliography  Save this article

Reconstructing multi-orientation irradiance via PV panels: An isotropic Physical-MLP hybrid model

Author

Listed:
  • Gao, Yang
  • Ma, Haoyu
  • Zheng, Jianan
  • Liu, Wenjun
  • Chen, Fangcai
  • Fan, Liulu
  • Wang, Hanchun
  • Liu, Wen
  • Zhang, Xinyu

Abstract

With the rapid development of solar energy, a large number of studies need solar irradiance data from different angles, while it is not feasible to collect arbitrary angles. To address this problem, we propose a hybrid model that uses two schemes with different characteristics to calculate solar irradiance from different angles and reconstruct the irradiance field. In this study, a small dataset located in Xiong'an New Area, China, containing various tilt angles and orientation angles is provided for model validation. We verify the performance of the two schemes, where the nRMSE of the Fixed-PV scheme is 6.75 % and the R2 value is 0.9171, while the nRMSE of the Tracking-PV scheme is 3.82 % and the R2 value is 0.981. In addition, we validated the performance of the model at different time resolutions (1s, 10s, 1min), different angles, and different weather, with the R2 value ranged from 0.8921 to 0.9171 for the Fixed-PV scheme, and from 0.9751 to 0.981 for the Tracking-PV scheme. The results show that the way of using the output of the physical model as the input parameter of machine learning improves the robustness of the hybrid model, overcoming the shortcomings of machine learning that can only predict solar irradiance based on a large amount of data. In addition, the two schemes are used to reconstruct the solar irradiance field to predict the single-day energy-receiving density from different angles. We used this model to predict the hourly power generation of two tilt-variable roof photovoltaic (PV) at Xiong'an station, which is the largest high-speed rail station in Asia. The results show that our predicted power generation follows the trend of the actual power generation, and the actual total power generation in different areas is about 85.66%–98.6 % of the predicted total power generation. The proposed method can be widely adopted to measure solar irradiance at other angles with PV panels as components. It is helpful to analyze and understand the optimal tilt angle of PV systems in the region and evaluate the power generation potential of PV systems on irregular building facades before implementing the project.

Suggested Citation

  • Gao, Yang & Ma, Haoyu & Zheng, Jianan & Liu, Wenjun & Chen, Fangcai & Fan, Liulu & Wang, Hanchun & Liu, Wen & Zhang, Xinyu, 2025. "Reconstructing multi-orientation irradiance via PV panels: An isotropic Physical-MLP hybrid model," Renewable Energy, Elsevier, vol. 241(C).
  • Handle: RePEc:eee:renene:v:241:y:2025:i:c:s0960148125000084
    DOI: 10.1016/j.renene.2025.122346
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148125000084
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2025.122346?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Miguel Carrasco & Antonino Laudani & Gabriele Maria Lozito & Fernando Mancilla-David & Francesco Riganti Fulginei & Alessandro Salvini, 2017. "Low-Cost Solar Irradiance Sensing for PV Systems," Energies, MDPI, vol. 10(7), pages 1-12, July.
    2. Ghimire, Sujan & Deo, Ravinesh C. & Raj, Nawin & Mi, Jianchun, 2019. "Deep solar radiation forecasting with convolutional neural network and long short-term memory network algorithms," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    3. Lou, Siwei & Li, Danny H.W. & Lam, Joseph C. & Chan, Wilco W.H., 2016. "Prediction of diffuse solar irradiance using machine learning and multivariable regression," Applied Energy, Elsevier, vol. 181(C), pages 367-374.
    4. Sun, Bing & Yu, Yixin & Qin, Chao, 2017. "Should China focus on the distributed development of wind and solar photovoltaic power generation? A comparative study," Applied Energy, Elsevier, vol. 185(P1), pages 421-439.
    5. Li, Huashan & Ma, Weibin & Lian, Yongwang & Wang, Xianlong & Zhao, Liang, 2011. "Global solar radiation estimation with sunshine duration in Tibet, China," Renewable Energy, Elsevier, vol. 36(11), pages 3141-3145.
    6. Yang, Dazhi, 2022. "Estimating 1-min beam and diffuse irradiance from the global irradiance: A review and an extensive worldwide comparison of latest separation models at 126 stations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    7. Xue, Jinlin, 2017. "Photovoltaic agriculture - New opportunity for photovoltaic applications in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1-9.
    8. Tiwari, G.N. & Mishra, R.K. & Solanki, S.C., 2011. "Photovoltaic modules and their applications: A review on thermal modelling," Applied Energy, Elsevier, vol. 88(7), pages 2287-2304, July.
    9. Lu, Yunbo & Wang, Lunche & Zhu, Canming & Zou, Ling & Zhang, Ming & Feng, Lan & Cao, Qian, 2023. "Predicting surface solar radiation using a hybrid radiative Transfer–Machine learning model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    10. Liao, Xuan & Zhu, Rui & Wong, Man Sing & Heo, Joon & Chan, P.W. & Kwok, Coco Yin Tung, 2023. "Fast and accurate estimation of solar irradiation on building rooftops in Hong Kong: A machine learning-based parameterization approach," Renewable Energy, Elsevier, vol. 216(C).
    11. Haider, Syed Altan & Sajid, Muhammad & Sajid, Hassan & Uddin, Emad & Ayaz, Yasar, 2022. "Deep learning and statistical methods for short- and long-term solar irradiance forecasting for Islamabad," Renewable Energy, Elsevier, vol. 198(C), pages 51-60.
    12. Zheng, Jianan & Liu, Wenjun & Cui, Ting & Wang, Hanchun & Chen, Fangcai & Gao, Yang & Fan, Liulu & Ali Abaker Omer, Altyeb & Ingenhoff, Jan & Zhang, Xinyu & Liu, Wen, 2023. "A novel domino-like snow removal system for roof PV arrays: Feasibility, performance, and economic benefits," Applied Energy, Elsevier, vol. 333(C).
    13. Boland, John & Ridley, Barbara & Brown, Bruce, 2008. "Models of diffuse solar radiation," Renewable Energy, Elsevier, vol. 33(4), pages 575-584.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jamil, Basharat & Akhtar, Naiem, 2017. "Comparison of empirical models to estimate monthly mean diffuse solar radiation from measured data: Case study for humid-subtropical climatic region of India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1326-1342.
    2. Lu, Yunbo & Wang, Lunche & Zhu, Canming & Zou, Ling & Zhang, Ming & Feng, Lan & Cao, Qian, 2023. "Predicting surface solar radiation using a hybrid radiative Transfer–Machine learning model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    3. Feng, Lan & Lin, Aiwen & Wang, Lunche & Qin, Wenmin & Gong, Wei, 2018. "Evaluation of sunshine-based models for predicting diffuse solar radiation in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 168-182.
    4. Chen, Ji-Long & He, Lei & Chen, Qiao & Lv, Ming-Quan & Zhu, Hong-Lin & Wen, Zhao-Fei & Wu, Sheng-Jun, 2019. "Study of monthly mean daily diffuse and direct beam radiation estimation with MODIS atmospheric product," Renewable Energy, Elsevier, vol. 132(C), pages 221-232.
    5. Wang, Lunche & Lu, Yunbo & Zou, Ling & Feng, Lan & Wei, Jing & Qin, Wenmin & Niu, Zigeng, 2019. "Prediction of diffuse solar radiation based on multiple variables in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 151-216.
    6. Gao, Yuan & Hu, Zehuan & Chen, Wei-An & Liu, Mingzhe, 2024. "Solutions to the insufficiency of label data in renewable energy forecasting: A comparative and integrative analysis of domain adaptation and fine-tuning," Energy, Elsevier, vol. 302(C).
    7. Wang, Hong & Sun, Fubao & Wang, Tingting & Liu, Wenbin, 2018. "Estimation of daily and monthly diffuse radiation from measurements of global solar radiation a case study across China," Renewable Energy, Elsevier, vol. 126(C), pages 226-241.
    8. Zang, Haixiang & Cheng, Lilin & Ding, Tao & Cheung, Kwok W. & Wang, Miaomiao & Wei, Zhinong & Sun, Guoqiang, 2019. "Estimation and validation of daily global solar radiation by day of the year-based models for different climates in China," Renewable Energy, Elsevier, vol. 135(C), pages 984-1003.
    9. Putri Nor Liyana Mohamad Radzi & Muhammad Naveed Akhter & Saad Mekhilef & Noraisyah Mohamed Shah, 2023. "Review on the Application of Photovoltaic Forecasting Using Machine Learning for Very Short- to Long-Term Forecasting," Sustainability, MDPI, vol. 15(4), pages 1-21, February.
    10. Li, Ruohan & Wang, Dongdong & Wang, Zhihao & Liang, Shunlin & Li, Zhanqing & Xie, Yiqun & He, Jiena, 2025. "Transformer approach to nowcasting solar energy using geostationary satellite data," Applied Energy, Elsevier, vol. 377(PA).
    11. Liu, Peirong & Tong, Xiaojuan & Zhang, Jinsong & Meng, Ping & Li, Jun & Zhang, Jingru, 2020. "Estimation of half-hourly diffuse solar radiation over a mixed plantation in north China," Renewable Energy, Elsevier, vol. 149(C), pages 1360-1369.
    12. Jamil, Basharat & Akhtar, Naiem, 2017. "Comparative analysis of diffuse solar radiation models based on sky-clearness index and sunshine period for humid-subtropical climatic region of India: A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 329-355.
    13. Du, Yimeng & Takeuchi, Kenji, 2019. "Can climate mitigation help the poor? Measuring impacts of the CDM in rural China," Journal of Environmental Economics and Management, Elsevier, vol. 95(C), pages 178-197.
    14. El-Sebaii, A.A. & Al-Hazmi, F.S. & Al-Ghamdi, A.A. & Yaghmour, S.J., 2010. "Global, direct and diffuse solar radiation on horizontal and tilted surfaces in Jeddah, Saudi Arabia," Applied Energy, Elsevier, vol. 87(2), pages 568-576, February.
    15. Eke, Rustu & Senturk, Ali, 2013. "Monitoring the performance of single and triple junction amorphous silicon modules in two building integrated photovoltaic (BIPV) installations," Applied Energy, Elsevier, vol. 109(C), pages 154-162.
    16. Lim, Juin Yau & Safder, Usman & How, Bing Shen & Ifaei, Pouya & Yoo, Chang Kyoo, 2021. "Nationwide sustainable renewable energy and Power-to-X deployment planning in South Korea assisted with forecasting model," Applied Energy, Elsevier, vol. 283(C).
    17. Dou, Weijing & Wang, Kai & Shan, Shuo & Li, Chenxi & Wang, Yiye & Zhang, Kanjian & Wei, Haikun & Sreeram, Victor, 2024. "Day-ahead Numerical Weather Prediction solar irradiance correction using a clustering method based on weather conditions," Applied Energy, Elsevier, vol. 365(C).
    18. Schindele, Stephan & Trommsdorff, Maximilian & Schlaak, Albert & Obergfell, Tabea & Bopp, Georg & Reise, Christian & Braun, Christian & Weselek, Axel & Bauerle, Andrea & Högy, Petra & Goetzberger, Ado, 2020. "Implementation of agrophotovoltaics: Techno-economic analysis of the price-performance ratio and its policy implications," Applied Energy, Elsevier, vol. 265(C).
    19. Mayer, Martin János & Yang, Dazhi & Szintai, Balázs, 2023. "Comparing global and regional downscaled NWP models for irradiance and photovoltaic power forecasting: ECMWF versus AROME," Applied Energy, Elsevier, vol. 352(C).
    20. Amaducci, Stefano & Yin, Xinyou & Colauzzi, Michele, 2018. "Agrivoltaic systems to optimise land use for electric energy production," Applied Energy, Elsevier, vol. 220(C), pages 545-561.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:241:y:2025:i:c:s0960148125000084. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.