IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v241y2025ics0960148124023140.html
   My bibliography  Save this article

3D rotational augmented flow effects on the multidisciplinary optimization of flatback airfoils

Author

Listed:
  • Doosttalab, Mehdi
  • Frommann, Olaf

Abstract

This paper investigates the impact of 3D rotational augmented flow at the root section of wind turbine rotor blades on the multidisciplinary optimization of thick flatback airfoils. Six different flatback airfoils with varying relative thicknesses ranging from 35 % to 50 %, along with various trailing edge gaps, were studied. As the design of airfoil sections is a multidisciplinary field that involves several aerodynamic and structural parameters, the Simulated Annealing (SA) algorithm, which is classified as a stochastic algorithm, was utilized to design the optimized shape of the flatback airfoil sections. The optimization process involved quasi-3D Navier-Stokes CFD calculations, which were performed using the commercial FLUENT code. The design Reynolds number was 6.0 × 106, and the optimized airfoil sections had relative thicknesses of 35 %, 40 %, 45 %, and 50 %, with a trailing edge gap ranging from 12.5 % to 20 %. The results were compared with previously optimized airfoils using a 2D flow solver. The optimization results indicate that the 3D rotational effects play a crucial role in the flow domain near the root area of the blade and should be considered in the design process.

Suggested Citation

  • Doosttalab, Mehdi & Frommann, Olaf, 2025. "3D rotational augmented flow effects on the multidisciplinary optimization of flatback airfoils," Renewable Energy, Elsevier, vol. 241(C).
  • Handle: RePEc:eee:renene:v:241:y:2025:i:c:s0960148124023140
    DOI: 10.1016/j.renene.2024.122246
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124023140
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.122246?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Xingxing & Yang, Ke & Bai, Jingyan & Xu, Jianzhong, 2016. "A new optimization approach to improve the overall performance of thick wind turbine airfoils," Energy, Elsevier, vol. 116(P1), pages 202-213.
    2. Du, Zhaohui & Selig, M.S, 2000. "The effect of rotation on the boundary layer of a wind turbine blade," Renewable Energy, Elsevier, vol. 20(2), pages 167-181.
    3. Osman, Mohamed S. & El-Banna, Abou-Zaid H., 1993. "Stability of multiobjective nonlinear programming problems with fuzzy parameters," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 35(4), pages 321-326.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Danmei & Hua, Ouyang & Du, Zhaohui, 2006. "A study on stall-delay for horizontal axis wind turbine," Renewable Energy, Elsevier, vol. 31(6), pages 821-836.
    2. Wu, Zhenlong, 2019. "Rotor power performance and flow physics in lateral sinusoidal gusts," Energy, Elsevier, vol. 176(C), pages 917-928.
    3. Ma, Ning & Lei, Hang & Han, Zhaolong & Zhou, Dai & Bao, Yan & Zhang, Kai & Zhou, Lei & Chen, Caiyong, 2018. "Airfoil optimization to improve power performance of a high-solidity vertical axis wind turbine at a moderate tip speed ratio," Energy, Elsevier, vol. 150(C), pages 236-252.
    4. Iván Herráez & Bernhard Stoevesandt & Joachim Peinke, 2014. "Insight into Rotational Effects on a Wind Turbine Blade Using Navier–Stokes Computations," Energies, MDPI, vol. 7(10), pages 1-25, October.
    5. Hamiden Abd El-Wahed Khalifa, 2020. "Goal programming approach for solving heptagonal fuzzy transportation problem under budgetry constraint," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 30(1), pages 85-96.
    6. Vianna Neto, Júlio Xavier & Guerra Junior, Elci José & Moreno, Sinvaldo Rodrigues & Hultmann Ayala, Helon Vicente & Mariani, Viviana Cocco & Coelho, Leandro dos Santos, 2018. "Wind turbine blade geometry design based on multi-objective optimization using metaheuristics," Energy, Elsevier, vol. 162(C), pages 645-658.
    7. El-Hady Kassem, Mohamed Abd, 2001. "Interactive stability of vector optimization problems," European Journal of Operational Research, Elsevier, vol. 134(3), pages 616-622, November.
    8. Perez, Larissa & Cossu, Remo & Grinham, Alistair & Penesis, Irene, 2022. "Tidal turbine performance and loads for various hub heights and wave conditions using high-frequency field measurements and Blade Element Momentum theory," Renewable Energy, Elsevier, vol. 200(C), pages 1548-1560.
    9. El-Shahat, Saeed A. & Li, Guojun & Fu, Lei, 2021. "Investigation of wave–current interaction for a tidal current turbine," Energy, Elsevier, vol. 227(C).
    10. El-Banna, Abou-Zaid H. & Zarea, Sana’a A., 2001. "Stability of linear vector optimization problems corresponding to an efficient set," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 57(6), pages 335-345.
    11. Scarlett, Gabriel Thomas & Sellar, Brian & van den Bremer, Ton & Viola, Ignazio Maria, 2019. "Unsteady hydrodynamics of a full-scale tidal turbine operating in large wave conditions," Renewable Energy, Elsevier, vol. 143(C), pages 199-213.
    12. Riyadh Belamadi & Abdelhakim Settar & Khaled Chetehouna & Adrian Ilinca, 2022. "Numerical Modeling of Horizontal Axis Wind Turbine: Aerodynamic Performances Improvement Using an Efficient Passive Flow Control System," Energies, MDPI, vol. 15(13), pages 1-21, July.
    13. Pavan Kumar & Hamiden Abd El-Wahed Khalifa, 2023. "Enhancing Decomposition Approach for Solving Multi-Objective Dynamic Non-Linear Programming Problems Involving Fuzziness," Mathematics, MDPI, vol. 11(14), pages 1-16, July.
    14. Shafiqur Rehman & Md. Mahbub Alam & Luai M. Alhems & M. Mujahid Rafique, 2018. "Horizontal Axis Wind Turbine Blade Design Methodologies for Efficiency Enhancement—A Review," Energies, MDPI, vol. 11(3), pages 1-34, February.
    15. Li, Qing'an & Kamada, Yasunari & Maeda, Takao & Murata, Junsuke & Yusuke, Nishida, 2016. "Effect of turbulence on power performance of a Horizontal Axis Wind Turbine in yawed and no-yawed flow conditions," Energy, Elsevier, vol. 109(C), pages 703-711.
    16. Shahzad Ali, Qazi & Kim, Man-Hoe, 2022. "Quantifying impacts of shell augmentation on power output of airborne wind energy system at elevated heights," Energy, Elsevier, vol. 239(PA).
    17. Li, Qing'an & Kamada, Yasunari & Maeda, Takao & Nishida, Yusuke, 2017. "Experimental investigations of boundary layer impact on the airfoil aerodynamic forces of Horizontal Axis Wind Turbine in turbulent inflows," Energy, Elsevier, vol. 135(C), pages 799-810.
    18. Kassem, Mohamed Abd El-Hady, 1997. "Decomposition of the fuzzy parametric space in multiobjective nonlinear programming problems," European Journal of Operational Research, Elsevier, vol. 101(1), pages 204-219, August.
    19. Li, Qing'an & Xu, Jianzhong & Maeda, Takao & Kamada, Yasunari & Nishimura, Shogo & Wu, Guangxing & Cai, Chang, 2019. "Laser Doppler Velocimetry (LDV) measurements of airfoil surface flow on a Horizontal Axis Wind Turbine in boundary layer," Energy, Elsevier, vol. 183(C), pages 341-357.
    20. Nour Khlaifat & Ali Altaee & John Zhou & Yuhan Huang & Ali Braytee, 2020. "Optimization of a Small Wind Turbine for a Rural Area: A Case Study of Deniliquin, New South Wales, Australia," Energies, MDPI, vol. 13(9), pages 1-26, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:241:y:2025:i:c:s0960148124023140. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.