IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v241y2025ics096014812402281x.html
   My bibliography  Save this article

Modeling of thermoelectric module integrated with sinusoidal U-pipes solar system using hybrid nanomaterial and novel fin designs

Author

Listed:
  • Sheikholeslami, M.
  • Mousavi, S.M.
  • Ahadi, A.
  • Mohammed, Hussein A.

Abstract

In the current study, an evacuated solar collector with sinusoidal U-pipes filled with paraffin was investigated for energy saving. To generate electricity in addition to storing thermal energy, thermoelectric generator (TEG) was integrated into the unit. The paraffin was enhanced with hybrid nanoparticles composed of silver (Ag) and titanium dioxide (TiO2) to improve thermal conductivity. Additionally, innovative fin shapes were employed to accelerate the melting process, and various fin arrangements were tested. A numerical technique was utilized to model the process, and the outputs showed good agreement with previous study, confirming the accuracy of the simulations. The study aimed to identify the optimal geometry for the solar energy system. The best-performing configuration included two sinusoidal U-pipes and four inclined fins, in contrast to the base case, which featured circular U-pipes without fins. For the optimal geometry, the liquid fraction (LF) and paraffin temperature (TPCM) increased by 47.38 % and 1.16 %, respectively, over time. At 45 min, with all enhancements applied, LF and TPCM improvements reached 52.21 % and 2.63 %, respectively. The integration of the TEG module allowed the system to produce electricity while storing thermal energy, although the efficiency of the TEG decreased by about 3.5 % due to the modifications. The modified solar system achieved an electrical output of 7.15 kW. By integrating sinusoidal U-pipes, hybrid nanoparticles, and novel fin designs, the study significantly improves thermal energy storage and electricity generation.

Suggested Citation

  • Sheikholeslami, M. & Mousavi, S.M. & Ahadi, A. & Mohammed, Hussein A., 2025. "Modeling of thermoelectric module integrated with sinusoidal U-pipes solar system using hybrid nanomaterial and novel fin designs," Renewable Energy, Elsevier, vol. 241(C).
  • Handle: RePEc:eee:renene:v:241:y:2025:i:c:s096014812402281x
    DOI: 10.1016/j.renene.2024.122213
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014812402281X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.122213?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tong, Yijie & Kim, Jinhyun & Cho, Honghyun, 2015. "Effects of thermal performance of enclosed-type evacuated U-tube solar collector with multi-walled carbon nanotube/water nanofluid," Renewable Energy, Elsevier, vol. 83(C), pages 463-473.
    2. Feng, Li & Liu, Jiajun & Lu, Haitao & Chen, Yuning & Wu, Shenyu, 2022. "A parametric study on the efficiency of a solar evacuated tube collector using phase change materials: A transient simulation," Renewable Energy, Elsevier, vol. 199(C), pages 745-758.
    3. Wang, Yiping & Li, Shuai & Xie, Xu & Deng, Yadong & Liu, Xun & Su, Chuqi, 2018. "Performance evaluation of an automotive thermoelectric generator with inserted fins or dimpled-surface hot heat exchanger," Applied Energy, Elsevier, vol. 218(C), pages 391-401.
    4. Kaya, Hüseyin & Alkasem, Mohanad & Arslan, Kamil, 2020. "Effect of nanoparticle shape of Al2O3/Pure Water nanofluid on evacuated U-Tube solar collector efficiency," Renewable Energy, Elsevier, vol. 162(C), pages 267-284.
    5. Korres, Dimitrios N. & Tzivanidis, Christos & Koronaki, Irene P. & Nitsas, Michael T., 2019. "Experimental, numerical and analytical investigation of a U-type evacuated tube collectors' array," Renewable Energy, Elsevier, vol. 135(C), pages 218-231.
    6. Gao, Yuanzhi & Dai, Zhaofeng & Wu, Dongxu & Wang, Changling & Chen, Bo & Zhang, Xiaosong, 2022. "Transient performance assessment of a hybrid PV-TEG system integrated with PCM under non-uniform radiation conditions: A numerical investigation," Renewable Energy, Elsevier, vol. 198(C), pages 352-366.
    7. Fatih Selimefendigil & Mohamed Omri & Walid Aich & Hatem Besbes & Nidhal Ben Khedher & Badr M. Alshammari & Lioua Kolsi, 2023. "Numerical Study of Thermo-Electric Conversion for TEG Mounted Wavy Walled Triangular Vented Cavity Considering Nanofluid with Different-Shaped Nanoparticles," Mathematics, MDPI, vol. 11(2), pages 1-16, January.
    8. Ji, Chenzhen & Qin, Zhen & Dubey, Swapnil & Choo, Fook Hoong & Duan, Fei, 2017. "Three-dimensional transient numerical study on latent heat thermal storage for waste heat recovery from a low temperature gas flow," Applied Energy, Elsevier, vol. 205(C), pages 1-12.
    9. Alshukri, Mohammed J. & Eidan, Adel A. & Najim, Saleh Ismail, 2021. "Thermal performance of heat pipe evacuated tube solar collector integrated with different types of phase change materials at various location," Renewable Energy, Elsevier, vol. 171(C), pages 635-646.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yıldırım, Erdal & Yurddaş, Ali, 2021. "Assessments of thermal performance of hybrid and mono nanofluid U-tube solar collector system," Renewable Energy, Elsevier, vol. 171(C), pages 1079-1096.
    2. Jesus Fernando Hinojosa & Saul Fernando Moreno & Victor Manuel Maytorena, 2023. "Low-Temperature Applications of Phase Change Materials for Energy Storage: A Descriptive Review," Energies, MDPI, vol. 16(7), pages 1-39, March.
    3. Feng, Li & Liu, Jiajun & Lu, Haitao & Chen, Yuning & Wu, Shenyu, 2022. "A parametric study on the efficiency of a solar evacuated tube collector using phase change materials: A transient simulation," Renewable Energy, Elsevier, vol. 199(C), pages 745-758.
    4. Gong, Jing-hu & Zhang, Zhi-peng & Sun, Zhi-hao & Wang, Yu-guang & Wang, Jun & Lund, Peter D., 2023. "Thermal and thermo-mechanical analysis of a novel pass-through all-glass evacuated collector tube by combining experiment with numerical simulation," Energy, Elsevier, vol. 277(C).
    5. Essa, Mohamed A. & Asal, Manar & Saleh, Mohamed A. & Shaltout, R.E., 2021. "A comparative study of the performance of a novel helical direct flow U-Tube evacuated tube collector," Renewable Energy, Elsevier, vol. 163(C), pages 2068-2080.
    6. Huaibin Gao & Runchen Wang & Xiaojiang Liu & Yu Ma & Chuanwei Zhang, 2024. "Numerical Investigation of a Novel Heat Exchanger in a High-Temperature Thermoelectric Generator," Energies, MDPI, vol. 17(5), pages 1-18, February.
    7. Chen, Jie & Wang, Ruochen & Ding, Renkai & Luo, Ding, 2024. "Matching design and numerical optimization of automotive thermoelectric generator system applied to range-extended electric vehicle," Applied Energy, Elsevier, vol. 370(C).
    8. Qin, Zhen & Ji, Chenzhen & Low, Zheng Hua & Tong, Wei & Wu, Chenlong & Duan, Fei, 2022. "Geometry effect of phase change material container on waste heat recovery enhancement," Applied Energy, Elsevier, vol. 327(C).
    9. Shu, Gequn & Ma, Xiaonan & Tian, Hua & Yang, Haoqi & Chen, Tianyu & Li, Xiaoya, 2018. "Configuration optimization of the segmented modules in an exhaust-based thermoelectric generator for engine waste heat recovery," Energy, Elsevier, vol. 160(C), pages 612-624.
    10. Kaya, Hüseyin & Arslan, Kamil & Eltugral, Nurettin, 2018. "Experimental investigation of thermal performance of an evacuated U-Tube solar collector with ZnO/Etylene glycol-pure water nanofluids," Renewable Energy, Elsevier, vol. 122(C), pages 329-338.
    11. Chauhan, Ranchan & Kim, Sung Chul, 2019. "Effective efficiency distribution characteristics in protruded/dimpled-arc plate solar thermal collector," Renewable Energy, Elsevier, vol. 138(C), pages 955-963.
    12. Aljaghtham, Mutabe & Celik, Emrah, 2020. "Design optimization of oil pan thermoelectric generator to recover waste heat from internal combustion engines," Energy, Elsevier, vol. 200(C).
    13. Yang, Sheng & Shao, Xue-Feng & Luo, Jia-Hao & Baghaei Oskouei, Seyedmohsen & Bayer, Özgür & Fan, Li-Wu, 2023. "A novel cascade latent heat thermal energy storage system consisting of erythritol and paraffin wax for deep recovery of medium-temperature industrial waste heat," Energy, Elsevier, vol. 265(C).
    14. Freeman, J. & Markides, C.N., 2024. "A solar diffusion-absorption refrigeration system for off-grid cold-chain provision, Part II: System simulation and assessment of performance," Renewable Energy, Elsevier, vol. 230(C).
    15. Xuan, Zhiwei & Ge, Minghui & Zhao, Chenyang & Li, Yanzhe & Wang, Shixue & Zhao, Yulong, 2024. "Effect of nonuniform solar radiation on the performance of solar thermoelectric generators," Energy, Elsevier, vol. 290(C).
    16. Chen, Wei-Hsin & Wang, Chi-Ming & Lee, Da-Sheng & Kwon, Eilhann E. & Ashokkumar, Veeramuthu & Culaba, Alvin B., 2022. "Optimization design by evolutionary computation for minimizing thermal stress of a thermoelectric generator with varied numbers of square pin fins," Applied Energy, Elsevier, vol. 314(C).
    17. Luo, Ding & Yang, Shuo & Zhang, Haokang & Cao, Jin & Yan, Yuying & Chen, Hao, 2025. "Performance improvement of an automotive thermoelectric generator by introducing a novel split fin structure," Applied Energy, Elsevier, vol. 382(C).
    18. Li, Yanzhe & Wang, Shixue & Zhao, Yulong & Yue, Like, 2022. "Effect of thermoelectric modules with different characteristics on the performance of thermoelectric generators inserted in the central flow region with porous foam copper," Applied Energy, Elsevier, vol. 327(C).
    19. Chen, Jie & Wang, Ruochen & Ding, Renkai & Luo, Ding, 2024. "Comprehensive comparison and applicable range of separating and coupling numerical models of thermoelectric generation device for waste heat recovery," Energy, Elsevier, vol. 304(C).
    20. Bhalla, Vishal & Khullar, Vikrant & Tyagi, Himanshu, 2018. "Experimental investigation of photo-thermal analysis of blended nanoparticles (Al2O3/Co3O4) for direct absorption solar thermal collector," Renewable Energy, Elsevier, vol. 123(C), pages 616-626.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:241:y:2025:i:c:s096014812402281x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.