IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v239y2025ics0960148124021037.html
   My bibliography  Save this article

A novel metric for quantifying solar irradiance stability: Mapping solar irradiance variability to photovoltaic power generation

Author

Listed:
  • Tian, Qun
  • Li, Jinxiao
  • Xie, Zhiang
  • Li, Puxi
  • Wang, Ya
  • Chen, Dongwei
  • Zheng, Yue

Abstract

The daily stability of solar irradiance significantly influences photovoltaic (PV) power generation; however, existing metrics for assessing it normally fail to robustly correlate with daily PV output. To address this gap, we introduce a new metric, the solar instability index (SII), formulated by applying the Wasserstein distance to assess the deviation of intra-day solar irradiance pattern from the anticipated diurnal cycle. In our case station, SII closely correlates with atmospheric moisture and available solar energy, suggesting its strong association with synoptic weather events that lead to solar resource loss. We further scrutinize the efficacy of SII alongside two existing metrics through two case studies. The results demonstrate that SII excels in capturing low-frequency variations in solar irradiance without relying on arbitrarily assigned parameters, thereby outperforming the other two metrics in establishing a robust correlation with PV power output. As such, in scenarios involving site selection for PV power plant, SII stands as a valuable metric for assessing the potential stability of daily PV power generation.

Suggested Citation

  • Tian, Qun & Li, Jinxiao & Xie, Zhiang & Li, Puxi & Wang, Ya & Chen, Dongwei & Zheng, Yue, 2025. "A novel metric for quantifying solar irradiance stability: Mapping solar irradiance variability to photovoltaic power generation," Renewable Energy, Elsevier, vol. 239(C).
  • Handle: RePEc:eee:renene:v:239:y:2025:i:c:s0960148124021037
    DOI: 10.1016/j.renene.2024.122035
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124021037
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.122035?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Dazhi & Wang, Wenting & Gueymard, Christian A. & Hong, Tao & Kleissl, Jan & Huang, Jing & Perez, Marc J. & Perez, Richard & Bright, Jamie M. & Xia, Xiang’ao & van der Meer, Dennis & Peters, Ian , 2022. "A review of solar forecasting, its dependence on atmospheric sciences and implications for grid integration: Towards carbon neutrality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    2. da Rocha, Vinicius Roggério & Costa, Rodrigo Santos & Martins, Fernando Ramos & Gonçalves, André Rodrigues & Pereira, Enio Bueno, 2022. "Variability index of solar resource based on data from surface and satellite," Renewable Energy, Elsevier, vol. 201(P1), pages 354-378.
    3. Zhang, Chunxiao & Shen, Chao & Yang, Qianru & Wei, Shen & Lv, Guoquan & Sun, Cheng, 2020. "An investigation on the attenuation effect of air pollution on regional solar radiation," Renewable Energy, Elsevier, vol. 161(C), pages 570-578.
    4. Peled, A. & Appelbaum, J., 2013. "Evaluation of solar radiation properties by statistical tools and wavelet analysis," Renewable Energy, Elsevier, vol. 59(C), pages 30-38.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mayer, Martin János & Yang, Dazhi & Szintai, Balázs, 2023. "Comparing global and regional downscaled NWP models for irradiance and photovoltaic power forecasting: ECMWF versus AROME," Applied Energy, Elsevier, vol. 352(C).
    2. Tao, Kejun & Zhao, Jinghao & Tao, Ye & Qi, Qingqing & Tian, Yajun, 2024. "Operational day-ahead photovoltaic power forecasting based on transformer variant," Applied Energy, Elsevier, vol. 373(C).
    3. Lu, Yunbo & Wang, Lunche & Zhu, Canming & Zou, Ling & Zhang, Ming & Feng, Lan & Cao, Qian, 2023. "Predicting surface solar radiation using a hybrid radiative Transfer–Machine learning model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    4. Mayer, Martin János & Yang, Dazhi, 2023. "Calibration of deterministic NWP forecasts and its impact on verification," International Journal of Forecasting, Elsevier, vol. 39(2), pages 981-991.
    5. Yang, Yanru & Liu, Yu & Zhang, Yihang & Shu, Shaolong & Zheng, Junsheng, 2025. "DEST-GNN: A double-explored spatio-temporal graph neural network for multi-site intra-hour PV power forecasting," Applied Energy, Elsevier, vol. 378(PA).
    6. Paletta, Quentin & Arbod, Guillaume & Lasenby, Joan, 2023. "Omnivision forecasting: Combining satellite and sky images for improved deterministic and probabilistic intra-hour solar energy predictions," Applied Energy, Elsevier, vol. 336(C).
    7. Robert Basmadjian & Amirhossein Shaafieyoun, 2023. "Assessing ARIMA-Based Forecasts for the Percentage of Renewables in Germany: Insights and Lessons for the Future," Energies, MDPI, vol. 16(16), pages 1-19, August.
    8. Zhang, Liwenbo & Wilson, Robin & Sumner, Mark & Wu, Yupeng, 2025. "Transfer learning in very-short-term solar forecasting: Bridging single site data to diverse geographical applications," Applied Energy, Elsevier, vol. 377(PC).
    9. Visser, L.R. & AlSkaif, T.A. & Khurram, A. & Kleissl, J. & van Sark, W.G.H.J.M., 2024. "Probabilistic solar power forecasting: An economic and technical evaluation of an optimal market bidding strategy," Applied Energy, Elsevier, vol. 370(C).
    10. Mayer, Martin János & Yang, Dazhi, 2023. "Pairing ensemble numerical weather prediction with ensemble physical model chain for probabilistic photovoltaic power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    11. Wang, Junjie & Ye, Li & Ding, Xiaoyu & Dang, Yaoguo, 2024. "A novel seasonal grey prediction model with time-lag and interactive effects for forecasting the photovoltaic power generation," Energy, Elsevier, vol. 304(C).
    12. Dávid Matusz-Kalász & István Bodnár, 2021. "Operation Problems of Solar Panel Caused by the Surface Contamination," Energies, MDPI, vol. 14(17), pages 1-13, September.
    13. Mayer, Martin János & Yang, Dazhi, 2024. "Optimal place to apply post-processing in the deterministic photovoltaic power forecasting workflow," Applied Energy, Elsevier, vol. 371(C).
    14. Yu, Hanxin & Chen, Shanlin & Chu, Yinghao & Li, Mengying & Ding, Yueming & Cui, Rongxi & Zhao, Xin, 2024. "Self-attention mechanism to enhance the generalizability of data-driven time-series prediction: A case study of intra-hour power forecasting of urban distributed photovoltaic systems," Applied Energy, Elsevier, vol. 374(C).
    15. Cheng, Xinghong & Ye, Dong & Shen, Yanbo & Li, Deping & Feng, Jinming, 2022. "Studies on the improvement of modelled solar radiation and the attenuation effect of aerosol using the WRF-Solar model with satellite-based AOD data over north China," Renewable Energy, Elsevier, vol. 196(C), pages 358-365.
    16. Pu, Jihong & Li, Yingxiao & Xu, Dan & Shen, Chao & Lu, Lin, 2025. "A quantitative investigation on the cooling benefits of retrofitting building skylights with broadband-spectrum selectivity in China," Applied Energy, Elsevier, vol. 381(C).
    17. Othman A. M. Omar & Ahmed O. Badr & Ibrahim Mohamed Diaaeldin, 2023. "Novel Fractional Order and Stochastic Formulations for the Precise Prediction of Commercial Photovoltaic Curves," Mathematics, MDPI, vol. 11(21), pages 1-19, October.
    18. Mayer, Martin János, 2022. "Benefits of physical and machine learning hybridization for photovoltaic power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    19. Agüera-Pérez, Agustín & Espinosa-Gavira, Manuel Jesús & Palomares-Salas, José Carlos & González-de-la-Rosa, Juan José & Sierra-Fernández, José María & Florencias-Oliveros, Olivia, 2024. "Meteorological contexts in the analysis of cloud-induced photovoltaic transients: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    20. Llinet Benavides Cesar & Oscar Perpiñán-Lamigueiro, 2025. "Solar Irradiance Ramp Classification Using the IBEDI (Irradiance-Based Extreme Day Identification) Method," Energies, MDPI, vol. 18(2), pages 1-21, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:239:y:2025:i:c:s0960148124021037. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.