IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v238y2025ics0960148124020007.html
   My bibliography  Save this article

Processing of persimmon tree pruning waste through the circular economy: Lignin nanoparticles and cellulosic ethanol production

Author

Listed:
  • Mesquita, Ricardo Marchezan Farias de
  • Dal Prá, Júlia Caroline
  • Fontana, Roselei Claudete
  • Montipó, Sheila
  • Baudel, Henrique Macedo
  • Diebold, Eduardo
  • Schneider, Willian Daniel Hahn
  • Camassola, Marli

Abstract

Persimmon tree pruning waste (PTPW) was subjected to different fractionation methods and bioconversion conditions to obtain lignin nanoparticles and cellulosic ethanol. Lignins were converted into manometric structures (Ø = 150–250 nm) with a high degree of uniformity, spherical or nearly spherical conformation, homogeneous dispersion and colloidal stability, with yields ranging from 16 % to 30 % by weight. Separate hydrolysis and fermentation of the pre-treated biomass indicated that the condition of slow acid addition followed by alkaline treatment provided a biomass more susceptible to enzymatic hydrolysis, with fermentable sugar yields above 60 % and an ethanol yield of 0.37 (g g−1). Thus, the use of PTPW to obtain lignin nanoparticles and cellulosic ethanol is feasible and results in value-added products; this study is the first in the literature to promote the use of PTPW.

Suggested Citation

  • Mesquita, Ricardo Marchezan Farias de & Dal Prá, Júlia Caroline & Fontana, Roselei Claudete & Montipó, Sheila & Baudel, Henrique Macedo & Diebold, Eduardo & Schneider, Willian Daniel Hahn & Camassola,, 2025. "Processing of persimmon tree pruning waste through the circular economy: Lignin nanoparticles and cellulosic ethanol production," Renewable Energy, Elsevier, vol. 238(C).
  • Handle: RePEc:eee:renene:v:238:y:2025:i:c:s0960148124020007
    DOI: 10.1016/j.renene.2024.121932
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124020007
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121932?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Schneider, Willian Daniel Hahn & Fontana, Roselei Claudete & Baudel, Henrique Macedo & de Siqueira, Félix Gonçalves & Rencoret, Jorge & Gutiérrez, Ana & de Eugenio, Laura Isabel & Prieto, Alicia & Mar, 2020. "Lignin degradation and detoxification of eucalyptus wastes by on-site manufacturing fungal enzymes to enhance second-generation ethanol yield," Applied Energy, Elsevier, vol. 262(C).
    2. Brand, Martha Andreia & Jacinto, Rodolfo Cardoso, 2020. "Apple pruning residues: Potential for burning in boiler systems and pellet production," Renewable Energy, Elsevier, vol. 152(C), pages 458-466.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bhattacharya, Raikamal & Arora, Sidharth & Ghosh, Sanjoy, 2022. "Utilization of waste pine needles for the production of cellulolytic enzymes in a solid state fermentation bioreactor and high calorific value fuel pellets from fermented residue: Towards a biorefiner," Renewable Energy, Elsevier, vol. 195(C), pages 1064-1076.
    2. Chen, Chenghan & Wang, Yanwei & Zhu, Qili & Tan, Furong & He, Mingxiong & Hu, Guoquan, 2024. "Enhancing bioethanol conversion from straw by a novel circulation promotion method," Energy, Elsevier, vol. 307(C).
    3. Ma, Shuaishuai & Li, Yuling & Li, Jingxue & Yu, Xiaona & Cui, Zongjun & Yuan, Xufeng & Zhu, Wanbin & Wang, Hongliang, 2022. "Features of single and combined technologies for lignocellulose pretreatment to enhance biomethane production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    4. Sá, Isabella A. & Macedo, Lucélia A. & Sant’Anna Chaves, Bruno & Galvão, Luiz Gustavo O. & Vale, Ailton Teixeira & Ghesti, Grace F. & de Paula Protásio, Thiago & Rodrigues, Juliana Sabino & Lamas, Giu, 2024. "Evaluating the quality of wood waste pellets and environmental impact mitigation for decentralized energy recovery in the Amazon," Renewable Energy, Elsevier, vol. 231(C).
    5. A. Silveira, Edgar & Santanna Chaves, Bruno & Macedo, Lucélia & Ghesti, Grace F. & Evaristo, Rafael B.W. & Cruz Lamas, Giulia & Luz, Sandra M. & Protásio, Thiago de Paula & Rousset, Patrick, 2023. "A hybrid optimization approach towards energy recovery from torrefied waste blends," Renewable Energy, Elsevier, vol. 212(C), pages 151-165.
    6. Alessio Ilari & Ester Foppa Pedretti & Carmine De Francesco & Daniele Duca, 2021. "Pellet Production from Residual Biomass of Greenery Maintenance in a Small-Scale Company to Improve Sustainability," Resources, MDPI, vol. 10(12), pages 1-12, December.
    7. Cheng, Jie & Hu, Sheng-Chun & Geng, Zeng-Chao & Zhu, Ming-Qiang, 2022. "Effect of structural changes of lignin during the microwave-assisted alkaline/ethanol pretreatment on cotton stalk for an effective enzymatic hydrolysis," Energy, Elsevier, vol. 254(PB).
    8. Emmanuel Blancarte-Contreras & Sacramento Corral-Rivas & Tilo Gustavo Domínguez-Gómez & José Encarnación Lujan-Soto & José Rodolfo Goche-Télles & Eusebio Montiel-Antuna, 2022. "Improving the Physical, Mechanical and Energetic Characteristics of Pine Sawdust by the Addition of up to 40% Agave durangensis Gentry Pellets," Energies, MDPI, vol. 15(10), pages 1-12, May.
    9. José Alberto Soria-González & Raúl Tauro & José Juan Alvarado-Flores & Víctor Manuel Berrueta-Soriano & José Guadalupe Rutiaga-Quiñones, 2022. "Avocado Tree Pruning Pellets ( Persea americana Mill.) for Energy Purposes: Characterization and Quality Evaluation," Energies, MDPI, vol. 15(20), pages 1-18, October.
    10. Jin, Xianchun & Ma, Jiangshan & Song, Jianing & Liu, Gao-Qiang, 2020. "Saccharification and detoxification of Na2CO3 pretreated rice straw with on-site manufactured enzymes secreted by Aspergillus fumigatus to enhance bioethanol yield," Renewable Energy, Elsevier, vol. 166(C), pages 117-124.
    11. Rodolfo Picchio & Francesco Latterini & Rachele Venanzi & Walter Stefanoni & Alessandro Suardi & Damiano Tocci & Luigi Pari, 2020. "Pellet Production from Woody and Non-Woody Feedstocks: A Review on Biomass Quality Evaluation," Energies, MDPI, vol. 13(11), pages 1-20, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:238:y:2025:i:c:s0960148124020007. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.