IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v222y2024ics096014812400082x.html
   My bibliography  Save this article

Simulation and forecasting of power by energy harvesting method in photovoltaic panels using artificial neural network

Author

Listed:
  • Demir, Hasan

Abstract

Heat is an important efficiency reducing factor in photovoltaic systems. Although many studies in the literature are related to the removal of waste heat from photovoltaic panels, the disadvantages such as installation and maintenance of cooling systems should not be forgotten. A study has shown that with a new approach, energy can be produced with the method of energy harvesting from waste heat. The results of the study were limited to a geographical region and climatic conditions in Aksaray, Turkey. In this article, the results of the study, which was limited to a region, were extended using the finite element method analysis and the artificial neural network model. Ten different cases were determined and temperature gradient was found by finite element analysis. The forecasting algorithm was developed with artificial neural network and estimates the harvestable power based on the temperature gradient. The accuracy of the algorithm was tested with the MSE and nRMSE statistical metrics which were calculated as 59.1423 mW and 13.6189 %, respectively. The training data accuracy of the network was 0.93987 and the combined accuracy was 0.94364. The results of this study are important to be a reference for researchers who want to establish a photovoltaic panel energy harvesting system.

Suggested Citation

  • Demir, Hasan, 2024. "Simulation and forecasting of power by energy harvesting method in photovoltaic panels using artificial neural network," Renewable Energy, Elsevier, vol. 222(C).
  • Handle: RePEc:eee:renene:v:222:y:2024:i:c:s096014812400082x
    DOI: 10.1016/j.renene.2024.120017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014812400082X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:222:y:2024:i:c:s096014812400082x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.