IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v220y2024ics096014812301577x.html
   My bibliography  Save this article

Evaluating energy generation of a building-integrated organic photovoltaic vertical façade: A case study of Latin America's pioneering installation

Author

Listed:
  • de Queiroz Corrêa, Luiza
  • Bagnis, Diego
  • Rabelo Melo Franco, Pedro
  • Ferreira da Costa Junior, Esly
  • Oliveira Souza da Costa, Andréa

Abstract

Building-integrated photovoltaics play a key role in the reduction of greenhouse gases emission towards sustainability in the building and construction sector. Organic solar technology holds several advantages such as lightweight, flexibility and semitransparency, suiting well for this type of application. When integrated into windows and facades, it provides a dual benefit: it acts as a solar radiation barrier, improving indoor thermal comfort, while also generating off-grid power. Besides that, organic devices are known to be more efficient than traditional photovoltaics based in silicon in diffuse and low light conditions. Nevertheless, only a few studies have been conducted in the area employing large-area commercial modules, in real operational conditions and for a long-term period. This work has the purpose of reducing this gap and shine a light on this debate bringing an analysis based on real data of a set of organic panels laminated in glass in a vertical pioneer installation in Latin America. For this, several linear regression models were tested to predict the energy generation from meteorological data and solar position throughout four years of operation, and the best models developed achieved 0.76 and 0.81 values for R2 with validation data, respectively for simple and multiple regressions. A visual analysis showed that the OPV system produced more energy in winter due to lower solar altitude, despite lower global radiation levels. The most significant variables in the models were the global solar radiation and the solar altitude. The use of glass lamination and vertical orientation likely preserved the performance of the panels, keeping energy generation consistent over four years, akin to the first year.

Suggested Citation

  • de Queiroz Corrêa, Luiza & Bagnis, Diego & Rabelo Melo Franco, Pedro & Ferreira da Costa Junior, Esly & Oliveira Souza da Costa, Andréa, 2024. "Evaluating energy generation of a building-integrated organic photovoltaic vertical façade: A case study of Latin America's pioneering installation," Renewable Energy, Elsevier, vol. 220(C).
  • Handle: RePEc:eee:renene:v:220:y:2024:i:c:s096014812301577x
    DOI: 10.1016/j.renene.2023.119662
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014812301577X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119662?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Álex Moreno & Daniel Chemisana & Rodolphe Vaillon & Alberto Riverola & Alejandro Solans, 2019. "Energy and Luminous Performance Investigation of an OPV/ETFE Glazing Element for Building Integration," Energies, MDPI, vol. 12(10), pages 1-16, May.
    2. Lee, Hyo Mun & Yoon, Jong Ho, 2018. "Power performance analysis of a transparent DSSC BIPV window based on 2 year measurement data in a full-scale mock-up," Applied Energy, Elsevier, vol. 225(C), pages 1013-1021.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Moreno, Álex & Chemisana, Daniel & Lamnatou, Chrysovalantou & Maestro, Santiago, 2023. "Energy and photosynthetic performance investigation of a semitransparent photovoltaic rooftop greenhouse for building integration," Renewable Energy, Elsevier, vol. 215(C).
    2. Ma, Tao & Li, Meng & Kazemian, Arash, 2020. "Photovoltaic thermal module and solar thermal collector connected in series to produce electricity and high-grade heat simultaneously," Applied Energy, Elsevier, vol. 261(C).
    3. La Notte, Luca & Giordano, Lorena & Calabrò, Emanuele & Bedini, Roberto & Colla, Giuseppe & Puglisi, Giovanni & Reale, Andrea, 2020. "Hybrid and organic photovoltaics for greenhouse applications," Applied Energy, Elsevier, vol. 278(C).
    4. Kyung-Woo Lee & Hyo-Mun Lee & Ru-Da Lee & Dong-Su Kim & Jong-Ho Yoon, 2021. "The Impact of Cracks in BIPV Modules on Power Outputs: A Case Study Based on Measured and Simulated Data," Energies, MDPI, vol. 14(4), pages 1-17, February.
    5. Li, Qingxiang & Zanelli, Alessandra, 2021. "A review on fabrication and applications of textile envelope integrated flexible photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    6. Sourava Chandra Pradhan & Jayadev Velore & Sruthi Meledath Meethal & Suraj Soman, 2023. "Fundamental Understanding of Dye Coverage and Performance in Dye-Sensitized Solar Cells Using Copper Electrolyte," Energies, MDPI, vol. 16(19), pages 1-14, September.
    7. Hyunho Lee & Hyung‐Jun Song, 2021. "Current status and perspective of colored photovoltaic modules," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 10(6), November.
    8. Selvaraj, Prabhakaran & Ghosh, Aritra & Mallick, Tapas K. & Sundaram, Senthilarasu, 2019. "Investigation of semi-transparent dye-sensitized solar cells for fenestration integration," Renewable Energy, Elsevier, vol. 141(C), pages 516-525.
    9. Yorgos Spanodimitriou & Giovanni Ciampi & Luigi Tufano & Michelangelo Scorpio, 2023. "Flexible and Lightweight Solutions for Energy Improvement in Construction: A Literature Review," Energies, MDPI, vol. 16(18), pages 1-50, September.
    10. Sun, Yanyi & Shanks, Katie & Baig, Hasan & Zhang, Wei & Hao, Xia & Li, Yongxue & He, Bo & Wilson, Robin & Liu, Hao & Sundaram, Senthilarasu & Zhang, Jingquan & Xie, Lingzhi & Mallick, Tapas & Wu, Yupe, 2018. "Integrated semi-transparent cadmium telluride photovoltaic glazing into windows: Energy and daylight performance for different architecture designs," Applied Energy, Elsevier, vol. 231(C), pages 972-984.
    11. Yu, Guoqing & Yang, Hongxing & Luo, Daina & Cheng, Xu & Ansah, Mark Kyeredey, 2021. "A review on developments and researches of building integrated photovoltaic (BIPV) windows and shading blinds," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    12. Vassiliades, C. & Agathokleous, R. & Barone, G. & Forzano, C. & Giuzio, G.F. & Palombo, A. & Buonomano, A. & Kalogirou, S., 2022. "Building integration of active solar energy systems: A review of geometrical and architectural characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    13. Jouttijärvi, Sami & Lobaccaro, Gabriele & Kamppinen, Aleksi & Miettunen, Kati, 2022. "Benefits of bifacial solar cells combined with low voltage power grids at high latitudes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    14. Simeng Li & Yanqiu Cui & Nerija Banaitienė & Chunlu Liu & Mark B. Luther, 2021. "Sensitivity Analysis for Carbon Emissions of Prefabricated Residential Buildings with Window Design Elements," Energies, MDPI, vol. 14(19), pages 1-25, October.
    15. Shi, Shaohang & Zhu, Ning & Wu, Shuangdui & Song, Yehao, 2024. "Evaluation and analysis of transmitted daylight color quality for different colored semi-transparent PV glazing," Renewable Energy, Elsevier, vol. 222(C).
    16. Shaohang Shi & Jingfen Sun & Mengjia Liu & Xinxing Chen & Weizhi Gao & Yehao Song, 2022. "Energy-Saving Potential Comparison of Different Photovoltaic Integrated Shading Devices (PVSDs) for Single-Story and Multi-Story Buildings," Energies, MDPI, vol. 15(23), pages 1-23, December.
    17. Shaohang Shi & Ning Zhu, 2023. "Challenges and Optimization of Building-Integrated Photovoltaics (BIPV) Windows: A Review," Sustainability, MDPI, vol. 15(22), pages 1-30, November.
    18. Bempah, Kwabena Opoku & Kwon, Kyoungjun & Kim, Katherine A., 2019. "Experimental study of photovoltaic panel mounting configurations for tube-shaped structures," Applied Energy, Elsevier, vol. 240(C), pages 754-765.
    19. Jing, Yifan & Zhu, Li & Yin, Baoquan & Li, Fangfang, 2023. "Evaluating the PV system expansion potential of existing integrated energy parks: A case study in North China," Applied Energy, Elsevier, vol. 330(PA).
    20. Wang, Chuyao & Yang, Hongxing & Ji, Jie, 2023. "Investigation on overall energy performance of a novel multi-functional PV/T window," Applied Energy, Elsevier, vol. 352(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:220:y:2024:i:c:s096014812301577x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.