IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v219y2023ip2s096014812301409x.html
   My bibliography  Save this article

N-doped C layer boost Z-scheme interfacial charge transfer in TiO2/ZnIn2S4 heterojunctions for enhance photocatalytic hydrogen evolution

Author

Listed:
  • Liu, Shengjun
  • Chi, Dianjun
  • Chen, Rong
  • Ma, Yan
  • Fang, Huixue
  • Zhang, Kui
  • Liu, Bo

Abstract

Inspired by natural photosynthesis, the design of novel Z-scheme photocatalytic systems holds great promise for improving photocatalytic hydrogen production performance. Here, we constructed a Z-scheme heterojunction to effectively improve the charge separation of TiO2/ZnIn2S4, with the N-doped C layer acting as an electron bridge. The T@NC-A/ZIS-72 heterojunctions demonstrated hydrogen production activity approximately 12.1 and 97.9 times higher than those of ZnIn2S4 and TiO2@NC-A, respectively. The excellent electron migration ability of the carbon layer accelerated the photocatalytic hydrogen production performance. Our design introduces a component to provide a dedicated charge transport pathway, overcoming the inherent properties of the material and providing a new perspective for enhancing photocatalytic performance.

Suggested Citation

  • Liu, Shengjun & Chi, Dianjun & Chen, Rong & Ma, Yan & Fang, Huixue & Zhang, Kui & Liu, Bo, 2023. "N-doped C layer boost Z-scheme interfacial charge transfer in TiO2/ZnIn2S4 heterojunctions for enhance photocatalytic hydrogen evolution," Renewable Energy, Elsevier, vol. 219(P2).
  • Handle: RePEc:eee:renene:v:219:y:2023:i:p2:s096014812301409x
    DOI: 10.1016/j.renene.2023.119494
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014812301409X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119494?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:219:y:2023:i:p2:s096014812301409x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.