IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v219y2023ip1s0960148123013502.html
   My bibliography  Save this article

Fines migration poses challenge for reservoir-wide chemical stimulation of geothermal carbonate reservoirs

Author

Listed:
  • Grifka, Jasmin
  • Nehler, Mathias
  • Licha, Tobias
  • Heinze, Thomas

Abstract

Fines material, which can compromise the permeability of geothermal reservoirs, is often only considered with regard to existing fines like clay particles that are mobilized. However, fines are also generated due to dissolution. This is a significant risk coming from chemical stimulation techniques in geothermal reservoirs, that try to increase the range of stimulation with retarded acid systems. Deeper in the reservoir, fines cannot be extracted as is done in the near wellbore region after stimulation and the generation of fines has to be prevented. This work investigates the dependence of fines generation on the reaction conditions. Flow-through experiments with citric acid on dolostone were conducted, creating dissolution regimes with a range of different Damköhler numbers. During the stimulation experiments, the creation of wormholes and the widening of existing flow paths could be differentiated by the shape of the differential pressure curves measured across the samples. Fines were always generated and could greatly reduce the permeability of the rock samples. But for very high Damköhler numbers, where the dissolution created large pathways, the fines were transported out of the major pathways as well as dissolved therein, thus not interfering with the increase of permeability due to dissolution.

Suggested Citation

  • Grifka, Jasmin & Nehler, Mathias & Licha, Tobias & Heinze, Thomas, 2023. "Fines migration poses challenge for reservoir-wide chemical stimulation of geothermal carbonate reservoirs," Renewable Energy, Elsevier, vol. 219(P1).
  • Handle: RePEc:eee:renene:v:219:y:2023:i:p1:s0960148123013502
    DOI: 10.1016/j.renene.2023.119435
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123013502
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119435?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ge, Jiachao & Zhang, Xiaozhou & Le-Hussain, Furqan, 2022. "Fines migration and mineral reactions as a mechanism for CO2 residual trapping during CO2 sequestration," Energy, Elsevier, vol. 239(PC).
    2. van Genuchten, M. Th. & Alves, W. J., 1982. "Analytical Solutions of the One-Dimensional Convective-Dispersive Solute Transport Equation," Technical Bulletins 157268, United States Department of Agriculture, Economic Research Service.
    3. Li, S. & Wang, S. & Tang, H., 2022. "Stimulation mechanism and design of enhanced geothermal systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Salah A. Faroughi & Ramin Soltanmohammadi & Pingki Datta & Seyed Kourosh Mahjour & Shirko Faroughi, 2023. "Physics-Informed Neural Networks with Periodic Activation Functions for Solute Transport in Heterogeneous Porous Media," Mathematics, MDPI, vol. 12(1), pages 1-23, December.
    2. Liu, Jun & Zhao, Peng & Peng, Jiao & Xian, Hongyu, 2024. "Insight into the investigation of heat extraction performance affected by natural fractures in enhanced geothermal system (EGS) with THM multiphysical field model," Renewable Energy, Elsevier, vol. 231(C).
    3. Jui-Sheng Chen & Ching-Ping Liang & Cheng-Hung Chang & Ming-Hsien Wan, 2019. "Simulating Three-Dimensional Plume Migration of a Radionuclide Decay Chain through Groundwater," Energies, MDPI, vol. 12(19), pages 1-22, September.
    4. Mauro Tagliaferri & Paweł Gładysz & Pietro Ungar & Magdalena Strojny & Lorenzo Talluri & Daniele Fiaschi & Giampaolo Manfrida & Trond Andresen & Anna Sowiżdżał, 2022. "Techno-Economic Assessment of the Supercritical Carbon Dioxide Enhanced Geothermal Systems," Sustainability, MDPI, vol. 14(24), pages 1-20, December.
    5. Mohammad Hossein Golestan & Carl Fredrik Berg, 2024. "Simulations of CO 2 Dissolution in Porous Media Using the Volume-of-Fluid Method," Energies, MDPI, vol. 17(3), pages 1-21, January.
    6. Zheng, Jun & Li, Peng & Dou, Bin & Fan, Tao & Tian, Hong & Lai, Xiaotian, 2022. "Impact research of well layout schemes and fracture parameters on heat production performance of enhanced geothermal system considering water cooling effect," Energy, Elsevier, vol. 255(C).
    7. Abhishek Sanskrityayn & Heejun Suk & Jui-Sheng Chen & Eungyu Park, 2021. "Generalized Analytical Solutions of The Advection-Dispersion Equation with Variable Flow and Transport Coefficients," Sustainability, MDPI, vol. 13(14), pages 1-23, July.
    8. Moisés A. C. Lemos & Camilla T. Baran & André L. B. Cavalcante & Ennio M. Palmeira, 2023. "A Semi-Analytical Model of Contaminant Transport in Barrier Systems with Arbitrary Numbers of Layers," Sustainability, MDPI, vol. 15(23), pages 1-18, November.
    9. Zhao, Peng & Liu, Jun & Elsworth, Derek, 2023. "Numerical study on a multifracture enhanced geothermal system considering matrix permeability enhancement induced by thermal unloading," Renewable Energy, Elsevier, vol. 203(C), pages 33-44.
    10. Ricardo Mendonça de Moraes & Luan Carlos de Sena Monteiro Ozelim & André Luís Brasil Cavalcante, 2022. "Generalized Skewed Model for Spatial-Fractional Advective–Dispersive Phenomena," Sustainability, MDPI, vol. 14(7), pages 1-19, March.
    11. Wang, Heng & Kou, Zuhao & Ji, Zemin & Wang, Shouchuan & Li, Yunfei & Jiao, Zunsheng & Johnson, Matthew & McLaughlin, J. Fred, 2023. "Investigation of enhanced CO2 storage in deep saline aquifers by WAG and brine extraction in the Minnelusa sandstone, Wyoming," Energy, Elsevier, vol. 265(C).
    12. He, Minyu & Teng, Liumei & Gao, Yuxiang & Rohani, Sohrab & Ren, Shan & Li, Jiangling & Yang, Jian & Liu, Qingcai & Liu, Weizao, 2022. "Simultaneous CO2 mineral sequestration and rutile beneficiation by using titanium-bearing blast furnace slag: Process description and optimization," Energy, Elsevier, vol. 248(C).
    13. Tinesh Pathania & T. I. Eldho, 2020. "A Moving Least Squares Based Meshless Element-Free Galerkin Method for the Coupled Simulation of Groundwater Flow and Contaminant Transport in an Aquifer," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(15), pages 4773-4794, December.
    14. Unknown, 1994. "Proceedings of an international workshop held in Kota Bharu, Kelantan, Malaysia, 24-27 October 1994: Agricultural Impacts on Groundwater Quality," ACIAR Proceedings Series 134721, Australian Centre for International Agricultural Research.
    15. Wu, Qianhui & Ding, Lei & Zhao, Lun & Alhashboul, Almohannad A. & Almajid, Muhammad M. & Patil, Pramod & Zhao, Wenqi & Fan, Zifei, 2024. "CO2 soluble surfactants for carbon storage in carbonate saline aquifers with achievable injectivity: Implications from the continuous CO2 injection study," Energy, Elsevier, vol. 290(C).
    16. Qiao, Mingzheng & Jing, Zefeng & Feng, Chenchen & Li, Minghui & Chen, Cheng & Zou, Xupeng & Zhou, Yujuan, 2024. "Review on heat extraction systems of hot dry rock: Classifications, benefits, limitations, research status and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 196(C).
    17. Kang, Yili & Zhou, Hexiang & Xu, Chengyuan & Yang, Xinglin & You, Zhenjiang, 2023. "Experimental study on the effect of fracture surface morphology on plugging zone strength based on 3D printing," Energy, Elsevier, vol. 262(PA).
    18. Changbing Yang & Ramón H. Treviño & Susan D. Hovorka & Jesus Delgado‐Alonso, 2015. "Semi‐analytical approach to reactive transport of CO 2 leakage into aquifers at carbon sequestration sites," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 5(6), pages 786-801, December.
    19. Tian, Weibing & Wu, Keliu & Feng, Dong & Gao, Yanling & Li, Jing & Chen, Zhangxin, 2023. "Dynamic contact angle effect on water-oil imbibition in tight oil reservoirs," Energy, Elsevier, vol. 284(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:219:y:2023:i:p1:s0960148123013502. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.