IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v188y2022icp830-848.html

Energy generation enhancement of arrays of point absorber wave energy converters via Moonpool's resonance effect

Author

Listed:
  • Tay, Zhi Yung

Abstract

This paper presents the power generation from point absorber wave energy converters (WEC) when they are placed in a moonpool. Due to the effect of resonance in the moonpool and the hydrodynamic interaction between the arrays of WECs, the energy generation from the arrays of WECs could be increased significantly under their optimal design consideration. The arrays of different numbers of WECs, i.e., one, five and 21 are considered in the study, where the performance of the WECs in a moonpool is presented and the wave elevation surrounding the array of WECs is shown. The research finding shows that the power generated by the arrays can be significantly enhanced when the wave period is greater than 8s by deploying five-WEC in a 30-m diameter moonpool with draft greater than 1m. With the ideal design condition established, the multiple arrays of five WECs arranged in a 2×1 array and 2×2 array configurations, are placed in the moonpool and subjected to regular and irregular waves to study the possibility of further energy generation enhancement with increased numbers of arrays.

Suggested Citation

  • Tay, Zhi Yung, 2022. "Energy generation enhancement of arrays of point absorber wave energy converters via Moonpool's resonance effect," Renewable Energy, Elsevier, vol. 188(C), pages 830-848.
  • Handle: RePEc:eee:renene:v:188:y:2022:i:c:p:830-848
    DOI: 10.1016/j.renene.2022.02.060
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122002026
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.02.060?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Hengxu Liu & Feng Yan & Fengmei Jing & Jingtao Ao & Zhaoliang Han & Fankai Kong, 2020. "Numerical and Experimental Investigation on a Moonpool-Buoy Wave Energy Converter," Energies, MDPI, vol. 13(9), pages 1-16, May.
    2. Jin, Chungkuk & Kang, HeonYong & Kim, MooHyun & Cho, Ilhyoung, 2020. "Performance estimation of resonance-enhanced dual-buoy wave energy converter using coupled time-domain simulation," Renewable Energy, Elsevier, vol. 160(C), pages 1445-1457.
    3. Silvia Bozzi & Adrià Moreno Miquel & Alessandro Antonini & Giuseppe Passoni & Renata Archetti, 2013. "Modeling of a Point Absorber for Energy Conversion in Italian Seas," Energies, MDPI, vol. 6(6), pages 1-19, June.
    4. Ning, Dezhi & Zhao, Xuanlie & Göteman, Malin & Kang, Haigui, 2016. "Hydrodynamic performance of a pile-restrained WEC-type floating breakwater: An experimental study," Renewable Energy, Elsevier, vol. 95(C), pages 531-541.
    5. Zhao, Huai & Zhang, Haicheng & Bi, Rengui & Xi, Ru & Xu, Daolin & Shi, Qijia & Wu, Bo, 2020. "Enhancing efficiency of a point absorber bistable wave energy converter under low wave excitations," Energy, Elsevier, vol. 212(C).
    6. Gunn, Kester & Stock-Williams, Clym, 2012. "Quantifying the global wave power resource," Renewable Energy, Elsevier, vol. 44(C), pages 296-304.
    7. Fankai Kong & Hengxu Liu & Weiming Su & Jingtao Ao & Hailong Chen & Fengmei Jing, 2019. "Analytical and Numerical Analysis of the Dynamics of a Moonpool Platform–Wave Energy Buoy (MP–WEB)," Energies, MDPI, vol. 12(21), pages 1-24, October.
    8. Mustapa, M.A. & Yaakob, O.B. & Ahmed, Yasser M. & Rheem, Chang-Kyu & Koh, K.K. & Adnan, Faizul Amri, 2017. "Wave energy device and breakwater integration: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 43-58.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fangyi Xu & Jihong Wang, 2025. "Harnessing Hybridized Machine Learning Algorithms for Sustainable Smart Production: A Case Study of Solar PV Energy in China," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 16(1), pages 3214-3264, March.
    2. Youn, Donghyup & Kim, Ki Jong & Kim, Daegyoum, 2025. "Enhancement of wave energy harvesting performance by wave concentration with vertical cylinders," Renewable Energy, Elsevier, vol. 239(C).
    3. Jin, Huaqing & Zhang, Haicheng & Zheng, Siming & Xu, Daolin, 2024. "Characteristics of a two-dimensional periodic wave energy converter array," Renewable Energy, Elsevier, vol. 222(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bao, Jian & Yu, Dingyong, 2024. "Hydrodynamic performance optimization of a cost-effective WEC-type floating breakwater with half-airfoil bottom," Renewable Energy, Elsevier, vol. 226(C).
    2. Cheng, Yong & Du, Weiming & Dai, Saishuai & Ji, Chunyan & Collu, Maurizio & Cocard, Margot & Cui, Lin & Yuan, Zhiming & Incecik, Atilla, 2022. "Hydrodynamic characteristics of a hybrid oscillating water column-oscillating buoy wave energy converter integrated into a π-type floating breakwater," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    3. Wang, Shangming & Xu, Hao & Gao, Zhiteng & Li, Ye, 2024. "Performance analysis of a novel hybrid device with floating breakwater and wave energy converter integrated," Renewable Energy, Elsevier, vol. 237(PB).
    4. Ju, Kun & Xu, Sheng & Zhang, Huidong & Jin, Siya, 2025. "A study on a novel multi-body floating-point absorber with a nonlinear power take-off system and its hydrodynamic performance," Energy, Elsevier, vol. 324(C).
    5. Liu, Zhen & Zhang, Xiaoxia & Ding, Lei & Han, Ziqian & Ni, Heqiang, 2024. "Hydrodynamic and energy-harvesting performances of a compact-array OWC device: An experimental study," Energy, Elsevier, vol. 310(C).
    6. Peng, Wei & Zhang, Yingnan & Zou, Qingping & Zhang, Jisheng & Li, Haoran, 2024. "Effect of varying PTO on a triple floater wave energy converter-breakwater hybrid system: An experimental study," Renewable Energy, Elsevier, vol. 224(C).
    7. Zhang, Hengming & Zhou, Binzhen & Vogel, Christopher & Willden, Richard & Zang, Jun & Zhang, Liang, 2020. "Hydrodynamic performance of a floating breakwater as an oscillating-buoy type wave energy converter," Applied Energy, Elsevier, vol. 257(C).
    8. Zhang, Chongwei & Li, Donghai & Ding, Zhenyu & Liu, Yingyi & Cao, Feifei & Ning, Dezhi, 2024. "Wave energy converter with multiple degrees of freedom for sustainable repurposing of decommissioned offshore platforms: An experimental study," Applied Energy, Elsevier, vol. 376(PA).
    9. Samuel Draycott & Iwona Szadkowska & Marta Silva & David M Ingram, 2018. "Assessing the Macro-Economic Benefit of Installing a Farm of Oscillating Water Columns in Scotland and Portugal," Energies, MDPI, vol. 11(10), pages 1-20, October.
    10. Xuanlie Zhao & Dezhi Ning & Chongwei Zhang & Haigui Kang, 2017. "Hydrodynamic Investigation of an Oscillating Buoy Wave Energy Converter Integrated into a Pile-Restrained Floating Breakwater," Energies, MDPI, vol. 10(5), pages 1-16, May.
    11. Calheiros-Cabral, T. & Rosa-Santos, P. & Taveira-Pinto, F. & Lara, J. L., 2025. "Harnessing wave energy through breakwater integration: A review of technologies, deployment strategies and an open-access database," Renewable and Sustainable Energy Reviews, Elsevier, vol. 223(C).
    12. Li, Demin & Dong, Xiaochen & Borthwick, Alistair G.L. & Sharma, Sanjay & Wang, Tianyuan & Huang, Heao & Shi, Hongda, 2024. "Two-buoy and single-buoy floating wave energy converters: A numerical comparison," Energy, Elsevier, vol. 296(C).
    13. Guo, Baoming & Wang, Rongquan & Ning, Dezhi & Chen, Lifen & Sulisz, Wojciech, 2020. "Hydrodynamic performance of a novel WEC-breakwater integrated system consisting of triple dual-freedom pontoons," Energy, Elsevier, vol. 209(C).
    14. Zhou, Binzhen & Lin, Chusen & Huang, Xu & Zhang, Hengming & Zhao, Wenhua & Zhu, Songye & Jin, Peng, 2024. "Experimental study on the hydrodynamic performance of a multi-DOF WEC-type floating breakwater," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    15. Cheng, Yong & Liu, Weifeng & Dai, Saishuai & Yuan, Zhiming & Incecik, Atilla, 2024. "Wave energy conversion by multi-mode exciting wave energy converters arrayed around a floating platform," Energy, Elsevier, vol. 313(C).
    16. Tomás Cabral & Daniel Clemente & Paulo Rosa-Santos & Francisco Taveira-Pinto & Tiago Morais & Filipe Belga & Henrique Cestaro, 2020. "Performance Assessment of a Hybrid Wave Energy Converter Integrated into a Harbor Breakwater," Energies, MDPI, vol. 13(1), pages 1-22, January.
    17. Clemente, D. & Rosa-Santos, P. & Taveira-Pinto, F., 2021. "On the potential synergies and applications of wave energy converters: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    18. Bao, Jian & Qu, Ming & Xu, Zhigang & Yu, Dingyong & Xu, Peng & Chen, Yuanjie, 2025. "Hydrodynamics performance and dynamic analyses of a low-frequency broadband heaving WEC-type breakwater with customized tri-stable restoring force: A 2D numerical study," Energy, Elsevier, vol. 323(C).
    19. Huang, Xu & Zheng, Zhi & Jin, Peng & Zhou, Binzhen & Zhang, Hengming, 2025. "Numerical optimization and experimental study on the hybrid system of pendulum wave energy converter and floating breakwater," Energy, Elsevier, vol. 331(C).
    20. Calheiros-Cabral, Tomás & Clemente, Daniel & Rosa-Santos, Paulo & Taveira-Pinto, Francisco & Ramos, Victor & Morais, Tiago & Cestaro, Henrique, 2020. "Evaluation of the annual electricity production of a hybrid breakwater-integrated wave energy converter," Energy, Elsevier, vol. 213(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:188:y:2022:i:c:p:830-848. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.