IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v177y2021icp242-258.html
   My bibliography  Save this article

Annual performance of the second-generation variable-geometry oscillating surge wave energy converter

Author

Listed:
  • Kelly, Michael
  • Tom, Nathan
  • Yu, Yi-Hsiang
  • Wright, Alan
  • Lawson, Michael

Abstract

Recent studies in wave energy have highlighted the need for a structured innovation approach in wave energy converter (WEC) design because cost-of-energy estimates have remained high. One such innovation being investigated by the National Renewable Energy Laboratory is WEC geometry control, which uses control surfaces in combination with an oscillating surge WEC (OSWEC) to increase device availability and power generation while limiting structural costs. This study performs the first analysis of annual performance for a novel OSWEC with geometry control to understand how the geometry control affects availability, annual power generation, and structural loadings like the power-take-off (PTO) torque or surge foundation force. Device hydrodynamic coefficients are calculated using linear potential theory for six geometry configurations. A nonideal PTO system is assumed and quadratic viscous damping losses are considered. Annual performance is evaluated and compared for three U.S. wave energy sites. The WEC geometry and PTO system are controlled on a sea-state basis to optimize for power capture while remaining under limits set on motion amplitude and structural loads. Results indicate that geometry control can increase availability up to 25 days in an average year depending on design limits, increase average power generation, and significantly reduce peak structural loads.

Suggested Citation

  • Kelly, Michael & Tom, Nathan & Yu, Yi-Hsiang & Wright, Alan & Lawson, Michael, 2021. "Annual performance of the second-generation variable-geometry oscillating surge wave energy converter," Renewable Energy, Elsevier, vol. 177(C), pages 242-258.
  • Handle: RePEc:eee:renene:v:177:y:2021:i:c:p:242-258
    DOI: 10.1016/j.renene.2020.11.075
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120318243
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.11.075?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Babarit, A., 2015. "A database of capture width ratio of wave energy converters," Renewable Energy, Elsevier, vol. 80(C), pages 610-628.
    2. Tom, N.M. & Lawson, M.J. & Yu, Y.H. & Wright, A.D., 2016. "Development of a nearshore oscillating surge wave energy converter with variable geometry," Renewable Energy, Elsevier, vol. 96(PA), pages 410-424.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bubbar, K. & Buckham, B., 2018. "On establishing an analytical power capture limit for self-reacting point absorber wave energy converters based on dynamic response," Applied Energy, Elsevier, vol. 228(C), pages 324-338.
    2. Li, Qiaofeng & Mi, Jia & Li, Xiaofan & Chen, Shuo & Jiang, Boxi & Zuo, Lei, 2021. "A self-floating oscillating surge wave energy converter," Energy, Elsevier, vol. 230(C).
    3. Tunde Aderinto & Hua Li, 2020. "Effect of Spatial and Temporal Resolution Data on Design and Power Capture of a Heaving Point Absorber," Sustainability, MDPI, vol. 12(22), pages 1-17, November.
    4. Adrian De Andres & Jéromine Maillet & Jørgen Hals Todalshaug & Patrik Möller & David Bould & Henry Jeffrey, 2016. "Techno-Economic Related Metrics for a Wave Energy Converters Feasibility Assessment," Sustainability, MDPI, vol. 8(11), pages 1-19, October.
    5. Adriano Silva Bastos & Tâmara Rita Costa de Souza & Dieimys Santos Ribeiro & Mirian de Lourdes Noronha Motta Melo & Carlos Barreira Martinez, 2023. "Wave Energy Generation in Brazil: A Georeferenced Oscillating Water Column Inventory," Energies, MDPI, vol. 16(8), pages 1-24, April.
    6. Giannini, Gianmaria & Rosa-Santos, Paulo & Ramos, Victor & Taveira-Pinto, Francisco, 2022. "Wave energy converters design combining hydrodynamic performance and structural assessment," Energy, Elsevier, vol. 249(C).
    7. Silva, Jorge Marques & Vieira, Susana M. & Valério, Duarte & Henriques, João C.C., 2023. "GA-optimized inverse fuzzy model control of OWC wave power plants," Renewable Energy, Elsevier, vol. 204(C), pages 556-568.
    8. Bertram, D.V. & Tarighaleslami, A.H. & Walmsley, M.R.W. & Atkins, M.J. & Glasgow, G.D.E., 2020. "A systematic approach for selecting suitable wave energy converters for potential wave energy farm sites," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    9. Wang, Yingguang & Wang, Lifu, 2018. "Towards realistically predicting the power outputs of wave energy converters: Nonlinear simulation," Energy, Elsevier, vol. 144(C), pages 120-128.
    10. James Allen & Konstantinos Sampanis & Jian Wan & Deborah Greaves & Jon Miles & Gregorio Iglesias, 2016. "Laboratory Tests in the Development of WaveCat," Sustainability, MDPI, vol. 8(12), pages 1-12, December.
    11. Fox, Brooklyn N. & Gomes, Rui P.F. & Gato, Luís M.C., 2021. "Analysis of oscillating-water-column wave energy converter configurations for integration into caisson breakwaters," Applied Energy, Elsevier, vol. 295(C).
    12. Carrelhas, A.A.D. & Gato, L.M.C. & Falcão, A.F.O. & Henriques, J.C.C., 2021. "Control law design for the air-turbine-generator set of a fully submerged 1.5 MW mWave prototype. Part 2: Experimental validation," Renewable Energy, Elsevier, vol. 171(C), pages 1002-1013.
    13. Jannis Langer & Jaco Quist & Kornelis Blok, 2021. "Review of Renewable Energy Potentials in Indonesia and Their Contribution to a 100% Renewable Electricity System," Energies, MDPI, vol. 14(21), pages 1-21, October.
    14. Scialò, A. & Henriques, J.C.C. & Malara, G. & Falcão, A.F.O. & Gato, L.M.C. & Arena, F., 2021. "Power take-off selection for a fixed U-OWC wave power plant in the Mediterranean Sea: The case of Roccella Jonica," Energy, Elsevier, vol. 215(PA).
    15. Gomes, Rui P.F. & Gato, Luís M.C. & Henriques, João C.C. & Portillo, Juan C.C. & Howey, Ben D. & Collins, Keri M. & Hann, Martyn R. & Greaves, Deborah M., 2020. "Compact floating wave energy converters arrays: Mooring loads and survivability through scale physical modelling," Applied Energy, Elsevier, vol. 280(C).
    16. Tunde Aderinto & Hua Li, 2019. "Review on Power Performance and Efficiency of Wave Energy Converters," Energies, MDPI, vol. 12(22), pages 1-24, November.
    17. Tatiana Potapenko & Joseph Burchell & Sandra Eriksson & Irina Temiz, 2021. "Wave Energy Converter’s Slack and Stiff Connection: Study of Absorbed Power in Irregular Waves," Energies, MDPI, vol. 14(23), pages 1-21, November.
    18. A. H. Samitha Weerakoon & Young-Ho Lee & Mohsen Assadi, 2023. "Wave Energy Convertor for Bilateral Offshore Wave Flows: A Computational Fluid Dynamics (CFD) Study," Sustainability, MDPI, vol. 15(9), pages 1-40, April.
    19. Seung Kwan Song & Yong Jun Sung & Jin Bae Park, 2017. "Numerical Modeling and 3D Investigation of INWAVE Device," Sustainability, MDPI, vol. 9(4), pages 1-23, March.
    20. Yadong Wen & Weijun Wang & Hua Liu & Longbo Mao & Hongju Mi & Wenqiang Wang & Guoping Zhang, 2018. "A Shape Optimization Method of a Specified Point Absorber Wave Energy Converter for the South China Sea," Energies, MDPI, vol. 11(10), pages 1-22, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:177:y:2021:i:c:p:242-258. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.