IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v169y2021icp836-842.html
   My bibliography  Save this article

Increases of bioethanol productivity by S. cerevisiae in unconventional bioreactor under ELF-magnetic field: New advances in the biophysical mechanism elucidation on yeasts

Author

Listed:
  • de Andrade, Cristilane M.
  • Cogo, Antonio J.D.
  • Perez, Victor Haber
  • dos Santos, Nathalia F.
  • Okorokova-Façanha, Anna Lvovna
  • Justo, Oselys Rodriguez
  • Façanha, Arnoldo Rocha

Abstract

The aim of this work was to evaluate the bioethanol productivity in an unconventional bioreactor assisted by extremely low frequency (ELF) - electromagnetic field and elucidate the biophysical mechanism of action by which ELF magnetic fields improve the bioethanol production by S. cerevisiae. Fermentations were carried out under axial field lines at 10 mT magnetic flux density (B), using three different recycling arrangements (spiral-shape tube, u-shape tube and whole bioreactor) in a closed loop. Fermentation kinetics were monitored by cell growth, substrate consumption, ethanol and by-product formation. In addition, electrophysiological measurements of the H+ ion fluxes were carried out in yeast cells sampled at different fermentation stages. ELF magnetic fields increased the glucose uptake, bioethanol production and H+ efflux, shortening in 2 h the fermentation time. The greatest effects of the ELF magnetic fields were obtained in the whole bioreactor arrangement, reaching an average increase of 33% in the bioethanol production. The results are consistent with a stimulatory effect of ELF magnetic fields on the plasma membrane H+-ATPase activity, as indicated by the specific increase of the vanadate-sensitive component of the yeast cells H+ efflux, providing a new biophysical mechanism of action for the biological effect of magnetic fields.

Suggested Citation

  • de Andrade, Cristilane M. & Cogo, Antonio J.D. & Perez, Victor Haber & dos Santos, Nathalia F. & Okorokova-Façanha, Anna Lvovna & Justo, Oselys Rodriguez & Façanha, Arnoldo Rocha, 2021. "Increases of bioethanol productivity by S. cerevisiae in unconventional bioreactor under ELF-magnetic field: New advances in the biophysical mechanism elucidation on yeasts," Renewable Energy, Elsevier, vol. 169(C), pages 836-842.
  • Handle: RePEc:eee:renene:v:169:y:2021:i:c:p:836-842
    DOI: 10.1016/j.renene.2021.01.074
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121000811
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.01.074?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiang, Yulin & Xiang, Yuxiu & Jiao, Yurong & Wang, Lipeng, 2019. "Surfactant-modified magnetic CaFe-layered double hydroxide for improving enzymatic saccharification and ethanol production of Artemisia ordosica," Renewable Energy, Elsevier, vol. 138(C), pages 465-473.
    2. Qu, Guangfei & Lv, Pei & Cai, Yingying & Tu, Can & Ma, Xi & Ning, Ping, 2020. "Enhanced anaerobic fermentation of dairy manure by microelectrolysis in electric and magnetic fields," Renewable Energy, Elsevier, vol. 146(C), pages 2758-2765.
    3. Xie, Wenlei & Han, Yuxiang & Wang, Hongyan, 2018. "Magnetic Fe3O4/MCM-41 composite-supported sodium silicate as heterogeneous catalysts for biodiesel production," Renewable Energy, Elsevier, vol. 125(C), pages 675-681.
    4. Baskar, G. & Naveen Kumar, R. & Heronimus Melvin, X. & Aiswarya, R. & Soumya, S., 2016. "Sesbania aculeate biomass hydrolysis using magnetic nanobiocomposite of cellulase for bioethanol production," Renewable Energy, Elsevier, vol. 98(C), pages 23-28.
    5. Hanxi Wang & Jianling Xu & Lianxi Sheng & Xuejun Liu & Meihan Zong & Difu Yao, 2019. "Anaerobic Digestion Technology for Methane Production Using Deer Manure Under Different Experimental Conditions," Energies, MDPI, vol. 12(9), pages 1-21, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Okoye, Patrick U. & Wang, Song & Khanday, Waheed Ahmad & Li, Sanxi & Tang, Tao & Zhang, Linnan, 2020. "Box-Behnken optimization of glycerol transesterification reaction to glycerol carbonate over calcined oil palm fuel ash derived catalyst," Renewable Energy, Elsevier, vol. 146(C), pages 2676-2687.
    2. Agnieszka A. Pilarska & Tomasz Kulupa & Adrianna Kubiak & Agnieszka Wolna-Maruwka & Krzysztof Pilarski & Alicja Niewiadomska, 2023. "Anaerobic Digestion of Food Waste—A Short Review," Energies, MDPI, vol. 16(15), pages 1-23, August.
    3. Seffati, Kambiz & Esmaeili, Hossein & Honarvar, Bizhan & Esfandiari, Nadia, 2020. "AC/CuFe2O4@CaO as a novel nanocatalyst to produce biodiesel from chicken fat," Renewable Energy, Elsevier, vol. 147(P1), pages 25-34.
    4. Mijangos, Gabriela E. & Cuautli, Cristina & Romero-Ibarra, Issis C. & Vazquez-Arenas, Jorge & Santolalla-Vargas, Carlos E. & Santes, Víctor & Castañeda-Galván, Adrián A. & Pfeiffer, Heriberto, 2022. "Experimental and theoretical analysis revealing the underlying chemistry accounting for the heterogeneous transesterification reaction in Na2SiO3 and Li2SiO3 catalysts," Renewable Energy, Elsevier, vol. 184(C), pages 845-856.
    5. Xie, Wenlei & Li, Jiangbo, 2023. "Magnetic solid catalysts for sustainable and cleaner biodiesel production: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    6. Qi Wu & Han Xiao & Hongguang Zhu & Fanghui Pan & Fulu Lu, 2023. "Carbon Felt Composite Electrode Plates Promote Methanogenesis through Microbial Electrolytic Cells," Energies, MDPI, vol. 16(11), pages 1-14, May.
    7. Frolich, Karel & Vávra, Aleš & Kocík, Jaroslav & Hájek, Martin & Jílková, Alena, 2019. "The long-term catalytic performance of mixed oxides in fixed-bed reactors in transesterification," Renewable Energy, Elsevier, vol. 143(C), pages 1259-1267.
    8. Xie, Wenlei & Gao, Chunli & Li, Jiangbo, 2021. "Sustainable biodiesel production from low-quantity oils utilizing H6PV3MoW8O40 supported on magnetic Fe3O4/ZIF-8 composites," Renewable Energy, Elsevier, vol. 168(C), pages 927-937.
    9. Bashiri Rezaie, Ali & Montazer, Majid, 2019. "One-step preparation of magnetically responsive nano CuFe2O4/fatty acids/polyester composite for dynamic thermal energy management applications," Renewable Energy, Elsevier, vol. 143(C), pages 1839-1851.
    10. Zhao, Bo & Zheng, Pengfei & Yang, Yuyi & Sha, Hao & Cao, Shengxian & Wang, Gong & Zhang, Yanhui, 2022. "Enhanced anaerobic digestion under medium temperature conditions: Augmentation effect of magnetic field and composites formed by titanium dioxide on the foamed nickel," Energy, Elsevier, vol. 257(C).
    11. Li, Ying & Niu, Shengli & Hao, Yanan & Zhou, Wenbo & Wang, Jun & Liu, Jiangwei, 2022. "Role of oxygen vacancy on activity of Fe-doped SrTiO3 perovskite bifunctional catalysts for biodiesel production," Renewable Energy, Elsevier, vol. 199(C), pages 1258-1271.
    12. Mamata Singhvi & Beom Soo Kim, 2020. "Current Developments in Lignocellulosic Biomass Conversion into Biofuels Using Nanobiotechology Approach," Energies, MDPI, vol. 13(20), pages 1-20, October.
    13. Cong, Wen-Jie & Wang, Yi-Tong & Li, Hu & Fang, Zhen & Sun, Jie & Liu, Hai-Tong & Liu, Jie-Teng & Tang, Song & Xu, Lujiang, 2020. "Direct production of biodiesel from waste oils with a strong solid base from alkalized industrial clay ash," Applied Energy, Elsevier, vol. 264(C).
    14. Marcin Zieliński & Marcin Dębowski & Joanna Kazimierowicz, 2021. "The Effect of Static Magnetic Field on Methanogenesis in the Anaerobic Digestion of Municipal Sewage Sludge," Energies, MDPI, vol. 14(3), pages 1-16, January.
    15. Izabella Maj & Sylwester Kalisz & Szymon Ciukaj, 2022. "Properties of Animal-Origin Ash—A Valuable Material for Circular Economy," Energies, MDPI, vol. 15(4), pages 1-15, February.
    16. Bañuelos, Jennifer A. & Velázquez-Hernández, I. & Guerra-Balcázar, M. & Arjona, N., 2018. "Production, characterization and evaluation of the energetic capability of bioethanol from Salicornia Bigelovii as a renewable energy source," Renewable Energy, Elsevier, vol. 123(C), pages 125-134.
    17. Elim Kim & Ayuk Corlbert Ayuk & Deog-Keun Kim & Hak Joo Kim & Hyung Chul Ham, 2022. "Boosting the Transesterification Reaction by Adding a Single Na Atom into g-C 3 N 4 Catalyst for Biodiesel Production: A First-Principles Study," Energies, MDPI, vol. 15(22), pages 1-13, November.
    18. Srivastava, Neha & Srivastava, Manish & Mishra, P.K. & Gupta, Vijai K. & Molina, Gustavo & Rodriguez-Couto, Susana & Manikanta, Ambepu & Ramteke, P.W., 2018. "Applications of fungal cellulases in biofuel production: Advances and limitations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2379-2386.
    19. Xie, Wenlei & Xiong, Yunfei & Wang, Hongyan, 2021. "Fe3O4-poly(AGE-DVB-GMA) composites immobilized with guanidine as a magnetically recyclable catalyst for enhanced biodiesel production," Renewable Energy, Elsevier, vol. 174(C), pages 758-768.
    20. Zaafouri, Kaouther & Ziadi, Manel & ben Hassen-Trabelsi, Aida & Mekni, Sabrine & Aïssi, Balkiss & Alaya, Marwen & Hamdi, Moktar, 2017. "Enzymatic saccharification and liquid state fermentation of hydrothermal pretreated Tunisian Luffa cylindrica (L.) fibers for cellulosic bioethanol production," Renewable Energy, Elsevier, vol. 114(PB), pages 1209-1213.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:169:y:2021:i:c:p:836-842. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.