IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v158y2020icp227-235.html
   My bibliography  Save this article

Ultra-wideband solar absorber based on refractory titanium metal

Author

Listed:
  • Yu, Peiqi
  • Yang, Hua
  • Chen, Xifang
  • Yi, Zao
  • Yao, Weitang
  • Chen, Jiafu
  • Yi, Yougen
  • Wu, Pinghui

Abstract

Electromagnetic wave absorbers with very long absorption spectra have become an important target for optoelectronic materials and technology. In this paper, we propose a titan-based resonator to achieve near-perfect wide spectrum absorption of solar radiation. In the whole spectrum of the study, the average absorption of the absorber is up to 93.17%. Using surface plasmon resonance, up to 1759 nm in the range of absorption over 90% in the absorption spectrum studied (166.8–1926.6 nm). Furthermore, the absorption spectrum of the absorber is not sensitive to polarization. Since the material constituting the absorber is a mainly refractory metal, it can work under a complex electromagnetic environment (solar radiation) and high-temperature conditions. Later, the influence of various parameters on the absorption spectrum and the mechanism of forming broadband absorption was explored. It is also found that other refractory metals similar to titanium have a good effect on the absorber with this structure.

Suggested Citation

  • Yu, Peiqi & Yang, Hua & Chen, Xifang & Yi, Zao & Yao, Weitang & Chen, Jiafu & Yi, Yougen & Wu, Pinghui, 2020. "Ultra-wideband solar absorber based on refractory titanium metal," Renewable Energy, Elsevier, vol. 158(C), pages 227-235.
  • Handle: RePEc:eee:renene:v:158:y:2020:i:c:p:227-235
    DOI: 10.1016/j.renene.2020.05.142
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120308478
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.05.142?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Thomas Søndergaard & Sergey M. Novikov & Tobias Holmgaard & René L. Eriksen & Jonas Beermann & Zhanghua Han & Kjeld Pedersen & Sergey I. Bozhevolnyi, 2012. "Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves," Nature Communications, Nature, vol. 3(1), pages 1-6, January.
    2. Qin, Caiyan & Kim, Joong Bae & Gonome, Hiroki & Lee, Bong Jae, 2020. "Absorption characteristics of nanoparticles with sharp edges for a direct-absorption solar collector," Renewable Energy, Elsevier, vol. 145(C), pages 21-28.
    3. Dong, Yong Xiang & Wang, Xuan Liang & Jin, En Mei & Jeong, Sang Mun & Jin, Bo & Lee, See Hoon, 2019. "One-step hydrothermal synthesis of Ag decorated TiO2 nanoparticles for dye-sensitized solar cell application," Renewable Energy, Elsevier, vol. 135(C), pages 1207-1212.
    4. Jin, Haichuan & Lin, Guiping & Guo, Yuandong & Bai, Lizhan & Wen, Dongsheng, 2020. "Nanoparticles enabled pump-free direct absorption solar collectors," Renewable Energy, Elsevier, vol. 145(C), pages 2337-2344.
    5. Antoine Moreau & Cristian Ciracì & Jack J. Mock & Ryan T. Hill & Qiang Wang & Benjamin J. Wiley & Ashutosh Chilkoti & David R. Smith, 2012. "Controlled-reflectance surfaces with film-coupled colloidal nanoantennas," Nature, Nature, vol. 492(7427), pages 86-89, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Patel, Shobhit K. & Parmar, Juveriya & Katkar, Vijay, 2022. "Graphene-based multilayer metasurface solar absorber with parameter optimization and behavior prediction using Long Short-Term Memory model," Renewable Energy, Elsevier, vol. 191(C), pages 47-58.
    2. Guo, Ling & Shi, Minfang & Liu, Yajie & Ma, Jun & Yang, Hongyan, 2023. "High efficient ultra-broadband nanoscale solar energy absorber based on stacked bilayer nano-arrays structure," Renewable Energy, Elsevier, vol. 215(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tembhare, Saurabh P. & Barai, Divya P. & Bhanvase, Bharat A., 2022. "Performance evaluation of nanofluids in solar thermal and solar photovoltaic systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    2. Xu, Yanyan & Xue, Yanqin & Qi, Hong & Cai, Weihua, 2021. "An updated review on working fluids, operation mechanisms, and applications of pulsating heat pipes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    3. Chen, Xingyu & Chen, Meijie & Zhou, Ping, 2022. "Solar-thermal conversion performance of heterogeneous nanofluids," Renewable Energy, Elsevier, vol. 198(C), pages 1307-1317.
    4. Chen, Xingyu & Zhou, Ping & Yan, Hongjie & Chen, Meijie, 2021. "Systematically investigating solar absorption performance of plasmonic nanoparticles," Energy, Elsevier, vol. 216(C).
    5. Mallah, Abdul Rahman & Zubir, M.N.M. & Alawi, Omer A. & Kazi, S.N. & Ahmed, W. & Sadri, R. & Kasaeian, Alibakhsh, 2022. "Experimental study on the effects of multi-resonance plasmonic nanoparticles for improving the solar collector efficiency," Renewable Energy, Elsevier, vol. 187(C), pages 1204-1223.
    6. Zhang, Hongyun & Wang, Lingling & Xi, Shaobo & Xie, Huaqing & Yu, Wei, 2021. "3D porous copper foam-based shape-stabilized composite phase change materials for high photothermal conversion, thermal conductivity and storage," Renewable Energy, Elsevier, vol. 175(C), pages 307-317.
    7. Gong, Han & Cui, Zheng & Shao, Wei & Ma, Xiaoteng, 2022. "Investigation of a novel surface inlay composite nanoparticle based on local surface plasmon resonance-enhanced solar absorption," Renewable Energy, Elsevier, vol. 197(C), pages 452-461.
    8. Li, Haoran & He, Yurong & Liu, Ziyu & Jiang, Baocheng & Huang, Yimin, 2017. "A flexible thin-film membrane with broadband Ag@TiO2 nanoparticle for high-efficiency solar evaporation enhancement," Energy, Elsevier, vol. 139(C), pages 210-219.
    9. Xing, Linzhuang & Wang, Ruipeng & Ha, Yuan & Li, Zhimin, 2023. "Absorption characteristics and solar thermal conversion of Fe3O4@Au core/shell nanoparticles for a direct-absorption solar collector," Renewable Energy, Elsevier, vol. 216(C).
    10. Zeng, Jia & Xuan, Yimin, 2022. "Direct solar-thermal conversion features of flowing photonic nanofluids," Renewable Energy, Elsevier, vol. 188(C), pages 588-602.
    11. Ma, Jing & Dai, Jianan & Duan, Yinli & Zhang, Jiajia & Qiang, Liangsheng & Xue, Juanqin, 2020. "Fabrication of PANI-TiO2/rGO hybrid composites for enhanced photocatalysis of pollutant removal and hydrogen production," Renewable Energy, Elsevier, vol. 156(C), pages 1008-1018.
    12. Qin, Caiyan & Zhu, Qunzhi & Li, Xiaoke & Sun, Chunlei & Chen, Meijie & Wu, Xiaohu, 2022. "Slotted metallic nanospheres with both electric and magnetic resonances for solar thermal conversion," Renewable Energy, Elsevier, vol. 197(C), pages 79-88.
    13. Sun, Chunlei & Zou, Yuan & Qin, Caiyan & Chen, Meijie & Li, Xiaoke & Zhang, Bin & Wu, Xiaohu, 2022. "Solar absorption characteristics of SiO2@Au core-shell composite nanorods for the direct absorption solar collector," Renewable Energy, Elsevier, vol. 189(C), pages 402-411.
    14. Wang, Tianmi & Si, Qiaoling & Hu, Yang & Tang, Guihua & Chua, Kian Jon, 2023. "Silica aerogel composited with both plasmonic nanoparticles and opacifiers for high-efficiency photo-thermal harvest," Energy, Elsevier, vol. 265(C).
    15. Muzamil Hussain & Syed Khawar Hussain Shah & Uzair Sajjad & Naseem Abbas & Ahsan Ali, 2022. "Recent Developments in Optical and Thermal Performance of Direct Absorption Solar Collectors," Energies, MDPI, vol. 15(19), pages 1-23, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:158:y:2020:i:c:p:227-235. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.