IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v3y2012i1d10.1038_ncomms1976.html
   My bibliography  Save this article

Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves

Author

Listed:
  • Thomas Søndergaard

    (Aalborg University)

  • Sergey M. Novikov

    (Institute of Technology and Innovation (ITI), University of Southern Denmark)

  • Tobias Holmgaard

    (Aalborg University)

  • René L. Eriksen

    (Institute of Technology and Innovation (ITI), University of Southern Denmark)

  • Jonas Beermann

    (Institute of Technology and Innovation (ITI), University of Southern Denmark)

  • Zhanghua Han

    (Institute of Technology and Innovation (ITI), University of Southern Denmark)

  • Kjeld Pedersen

    (Aalborg University)

  • Sergey I. Bozhevolnyi

    (Institute of Technology and Innovation (ITI), University of Southern Denmark)

Abstract

Excitation of localized and delocalized surface plasmon resonances can be used for turning excellent reflectors of visible light, such as gold and silver, into efficient absorbers, whose wavelength, polarization or angular bandwidths are however necessarily limited owing to the resonant nature of surface plasmon excitations involved. Nonresonant absorption has so far been achieved by using combined nano- and micro-structural surface modifications and with composite materials involving metal nanoparticles embedded in dielectric layers. Here we realize nonresonant light absorption in a well-defined geometry by using ultra-sharp convex metal grooves via adiabatic nanofocusing of gap surface plasmon modes excited by scattering off subwavelength-sized wedges. We demonstrate experimentally that two-dimensional arrays of sharp convex grooves in gold ensure efficient (>87%) broadband (450–850 nm) absorption of unpolarized light, reaching an average level of 96%. Efficient absorption of visible light by nanostructured metal surfaces open new exciting perspectives within plasmonics, especially for thermophotovoltaics.

Suggested Citation

  • Thomas Søndergaard & Sergey M. Novikov & Tobias Holmgaard & René L. Eriksen & Jonas Beermann & Zhanghua Han & Kjeld Pedersen & Sergey I. Bozhevolnyi, 2012. "Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves," Nature Communications, Nature, vol. 3(1), pages 1-6, January.
  • Handle: RePEc:nat:natcom:v:3:y:2012:i:1:d:10.1038_ncomms1976
    DOI: 10.1038/ncomms1976
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms1976
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms1976?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Haoran & He, Yurong & Liu, Ziyu & Jiang, Baocheng & Huang, Yimin, 2017. "A flexible thin-film membrane with broadband Ag@TiO2 nanoparticle for high-efficiency solar evaporation enhancement," Energy, Elsevier, vol. 139(C), pages 210-219.
    2. Yu, Peiqi & Yang, Hua & Chen, Xifang & Yi, Zao & Yao, Weitang & Chen, Jiafu & Yi, Yougen & Wu, Pinghui, 2020. "Ultra-wideband solar absorber based on refractory titanium metal," Renewable Energy, Elsevier, vol. 158(C), pages 227-235.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:3:y:2012:i:1:d:10.1038_ncomms1976. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.