IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v156y2020icp361-369.html
   My bibliography  Save this article

Collective control in arrays of wave energy converters

Author

Listed:
  • Zou, Shangyan
  • Abdelkhalik, Ossama

Abstract

A Collective Control is developed in this paper for arrays of Wave Energy Converters (WECs). The proposed controller applies a Proportional-Derivative feedback control law for each WEC with the optimized controller gains. A surrogate model, composed of only mechanical elements, is adopted to replace the hydrodynamic model during the optimization process. An indirect exterior penalty function approach is implemented to handle the constraints on the displacement and control. The weight of the penalty function is updated in subsequent iterations in the Sequential Unconstrained Minimization Technique. A numerical simulation is first conducted for identification of the surrogate model parameters. With the control gains optimized based on the surrogate model, the energy conversion is compared for three models: the surrogate model, a model that uses a boundary element tool to compute the hydrodynamic forces, and a simulation using AQWA. The results show a good agreement of the energy conversion among the models. Finally, the performance of the surrogate model is analyzed. It is shown that the proposed controller maximizes the energy conversion of the entire WEC array while satisfying the constraints. Moreover, the surrogate model can replace the hydrodynamic model to predict the system behavior with adequate accuracy and more efficiency.

Suggested Citation

  • Zou, Shangyan & Abdelkhalik, Ossama, 2020. "Collective control in arrays of wave energy converters," Renewable Energy, Elsevier, vol. 156(C), pages 361-369.
  • Handle: RePEc:eee:renene:v:156:y:2020:i:c:p:361-369
    DOI: 10.1016/j.renene.2020.04.069
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120306017
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.04.069?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Falcão, António F.O. & Henriques, João C.C., 2016. "Oscillating-water-column wave energy converters and air turbines: A review," Renewable Energy, Elsevier, vol. 85(C), pages 1391-1424.
    2. Li, Guang & Belmont, Mike R., 2014. "Model predictive control of sea wave energy converters – Part II: The case of an array of devices," Renewable Energy, Elsevier, vol. 68(C), pages 540-549.
    3. Li, Guang & Belmont, Michael R., 2014. "Model predictive control of sea wave energy converters – Part I: A convex approach for the case of a single device," Renewable Energy, Elsevier, vol. 69(C), pages 453-463.
    4. Zou, Shangyan & Abdelkhalik, Ossama & Robinett, Rush & Bacelli, Giorgio & Wilson, David, 2017. "Optimal control of wave energy converters," Renewable Energy, Elsevier, vol. 103(C), pages 217-225.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dengshuai Wang & Zhenquan Zhang & Yunpeng Hai & Yanjun Liu & Gang Xue, 2023. "Design and Control of Hydraulic Power Take-Off System for an Array of Point Absorber Wave Energy Converters," Sustainability, MDPI, vol. 15(22), pages 1-25, November.
    2. Gomes, Rui P.F. & Gato, Luís M.C. & Henriques, João C.C. & Portillo, Juan C.C. & Howey, Ben D. & Collins, Keri M. & Hann, Martyn R. & Greaves, Deborah M., 2020. "Compact floating wave energy converters arrays: Mooring loads and survivability through scale physical modelling," Applied Energy, Elsevier, vol. 280(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zou, Shangyan & Abdelkhalik, Ossama, 2020. "Time-varying linear quadratic Gaussian optimal control for three-degree-of-freedom wave energy converters," Renewable Energy, Elsevier, vol. 149(C), pages 217-225.
    2. Abdelkhalik, Ossama & Zou, Shangyan, 2019. "Control of small two-body heaving wave energy converters for ocean measurement applications," Renewable Energy, Elsevier, vol. 132(C), pages 587-595.
    3. Ni, Wenchi & Zhang, Xu & Zhang, Wei & Liang, Shuangling, 2021. "Numerical investigation of adaptive damping control for raft-type wave energy converters," Renewable Energy, Elsevier, vol. 175(C), pages 520-531.
    4. Li, L. & Gao, Y. & Ning, D.Z. & Yuan, Z.M., 2021. "Development of a constraint non-causal wave energy control algorithm based on artificial intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    5. Guo, Bingyong & Patton, Ron J. & Jin, Siya & Lan, Jianglin, 2018. "Numerical and experimental studies of excitation force approximation for wave energy conversion," Renewable Energy, Elsevier, vol. 125(C), pages 877-889.
    6. Ozkop, Emre & Altas, Ismail H., 2017. "Control, power and electrical components in wave energy conversion systems: A review of the technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 106-115.
    7. Son, Daewoong & Yeung, Ronald W., 2017. "Optimizing ocean-wave energy extraction of a dual coaxial-cylinder WEC using nonlinear model predictive control," Applied Energy, Elsevier, vol. 187(C), pages 746-757.
    8. Del Pozo Gonzalez, Hector & Bianchi, Fernando D. & Dominguez-Garcia, Jose Luis & Gomis-Bellmunt, Oriol, 2023. "Co-located wind-wave farms: Optimal control and grid integration," Energy, Elsevier, vol. 272(C).
    9. Li, Liang & Gao, Yan, 2023. "Development of a real-time wave energy control with consideration of control latency," Energy, Elsevier, vol. 277(C).
    10. Faÿ, François-Xavier & Henriques, João C. & Kelly, James & Mueller, Markus & Abusara, Moahammad & Sheng, Wanan & Marcos, Marga, 2020. "Comparative assessment of control strategies for the biradial turbine in the Mutriku OWC plant," Renewable Energy, Elsevier, vol. 146(C), pages 2766-2784.
    11. Vakis, Antonis I. & Anagnostopoulos, John S., 2016. "Mechanical design and modeling of a single-piston pump for the novel power take-off system of a wave energy converter," Renewable Energy, Elsevier, vol. 96(PA), pages 531-547.
    12. Tunde Aderinto & Hua Li, 2020. "Effect of Spatial and Temporal Resolution Data on Design and Power Capture of a Heaving Point Absorber," Sustainability, MDPI, vol. 12(22), pages 1-17, November.
    13. Chen, Jing & Wen, Hongjie & Wang, Yongxue & Ren, Bing, 2020. "Experimental investigation of an annular sector OWC device incorporated into a dual cylindrical caisson breakwater," Energy, Elsevier, vol. 211(C).
    14. Luana Gurnari & Pasquale G. F. Filianoti & Marco Torresi & Sergio M. Camporeale, 2020. "The Wave-to-Wire Energy Conversion Process for a Fixed U-OWC Device," Energies, MDPI, vol. 13(1), pages 1-25, January.
    15. Pasta, Edoardo & Faedo, Nicolás & Mattiazzo, Giuliana & Ringwood, John V., 2023. "Towards data-driven and data-based control of wave energy systems: Classification, overview, and critical assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    16. Paresh Halder & Hideki Takebe & Krisna Pawitan & Jun Fujita & Shuji Misumi & Tsumoru Shintake, 2020. "Turbine Characteristics of Wave Energy Conversion Device for Extraction Power Using Breaking Waves," Energies, MDPI, vol. 13(4), pages 1-17, February.
    17. Manuel García-Díaz & Bruno Pereiras & Celia Miguel-González & Laudino Rodríguez & Jesús Fernández-Oro, 2021. "CFD Analysis of the Performance of a Double Decker Turbine for Wave Energy Conversion," Energies, MDPI, vol. 14(4), pages 1-19, February.
    18. Halder, Paresh & Samad, Abdus & Thévenin, Dominique, 2017. "Improved design of a Wells turbine for higher operating range," Renewable Energy, Elsevier, vol. 106(C), pages 122-134.
    19. Rafael Guardeño & Agustín Consegliere & Manuel J. López, 2018. "A Study about Performance and Robustness of Model Predictive Controllers in a WEC System," Energies, MDPI, vol. 11(10), pages 1-23, October.
    20. Zhou, Yu & Ning, Dezhi & Liang, Dongfang & Cai, Shuqun, 2021. "Nonlinear hydrodynamic analysis of an offshore oscillating water column wave energy converter," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:156:y:2020:i:c:p:361-369. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.