IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v152y2020icp529-539.html
   My bibliography  Save this article

The effect of dust accumulation on the cleanliness factor of a parabolic trough solar concentrator

Author

Listed:
  • Wu, Ze
  • Yan, Suying
  • Wang, Zefeng
  • Ming, Tingzhen
  • Zhao, Xiaoyan
  • Ma, Rui
  • Wu, Yuting

Abstract

Solar reflectors are exposed to outdoor environments where dust accumulation is a primary degrading factor on optical performance. In this study, the effect of dust accumulation on reflectivity at different positions on the reflector of a parabolic trough solar thermal power plant in Hohhot, China was investigated and analyzed. The physical and chemical properties of dust accumulation were tested using a combination of spectrophotometer, scanning electron microscopy, and X-ray diffraction. The results showed that dust accumulation on the bottom edge of the reflector caused the largest decrease in reflectivity compared to dust on the center and top edge. In addition, dust particles at Hohhot were dominated by quartz (SiO2, 53.5%), followed by calcium oxide (CaCO3, 25.4%), and some minor feldspar minerals (NaAlSi3O8, 21.1%). However, some characteristics of the dust could not be determined by experimental measurements. To address this gap, a physical model was proposed to predict the impact of dust accumulation on light reflectivity of the reflector. Different physical parameters of the model are discussed, such as the size of the particles, diaphaneity, the incidence light angle, and tilt angle. The maximum relative deviation between the mathematical model and the experimental results was only 1%.

Suggested Citation

  • Wu, Ze & Yan, Suying & Wang, Zefeng & Ming, Tingzhen & Zhao, Xiaoyan & Ma, Rui & Wu, Yuting, 2020. "The effect of dust accumulation on the cleanliness factor of a parabolic trough solar concentrator," Renewable Energy, Elsevier, vol. 152(C), pages 529-539.
  • Handle: RePEc:eee:renene:v:152:y:2020:i:c:p:529-539
    DOI: 10.1016/j.renene.2020.01.091
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120301105
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.01.091?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xingcai, Li & Kun, Niu, 2018. "Effectively predict the solar radiation transmittance of dusty photovoltaic panels through Lambert-Beer law," Renewable Energy, Elsevier, vol. 123(C), pages 634-638.
    2. Hachicha, Ahmed Amine & Al-Sawafta, Israa & Ben Hamadou, Dhouha, 2019. "Numerical and experimental investigations of dust effect on CSP performance under United Arab Emirates weather conditions," Renewable Energy, Elsevier, vol. 143(C), pages 263-276.
    3. Bouaddi, S. & Ihlal, A. & Fernández-García, A., 2017. "Comparative analysis of soiling of CSP mirror materials in arid zones," Renewable Energy, Elsevier, vol. 101(C), pages 437-449.
    4. Pelay, Ugo & Luo, Lingai & Fan, Yilin & Stitou, Driss & Rood, Mark, 2017. "Thermal energy storage systems for concentrated solar power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 82-100.
    5. Shen, Wenqing & Ming, Tingzhen & Ding, Yan & Wu, Yongjia & de_Richter, Renaud K., 2014. "Numerical analysis on an industrial-scaled solar updraft power plant system with ambient crosswind," Renewable Energy, Elsevier, vol. 68(C), pages 662-676.
    6. Sarver, Travis & Al-Qaraghuli, Ali & Kazmerski, Lawrence L., 2013. "A comprehensive review of the impact of dust on the use of solar energy: History, investigations, results, literature, and mitigation approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 698-733.
    7. Belgasim, Basim & Aldali, Yasser & Abdunnabi, Mohammad J.R. & Hashem, Gamal & Hossin, Khaled, 2018. "The potential of concentrating solar power (CSP) for electricity generation in Libya," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 1-15.
    8. Said, S.A.M., 1990. "Effects of dust accumulation on performances of thermal and photovoltaic flat-plate collectors," Applied Energy, Elsevier, vol. 37(1), pages 73-84.
    9. Erdenedavaa, Purevdalai & Akisawa, Atsushi & Adiyabat, Amarbayar & Otgonjanchiv, Erdenesuvd, 2019. "Observation and modeling of dust deposition on glass tube of evacuated solar thermal collectors in Mongolia," Renewable Energy, Elsevier, vol. 130(C), pages 613-621.
    10. Salari, Ali & Hakkaki-Fard, Ali, 2019. "A numerical study of dust deposition effects on photovoltaic modules and photovoltaic-thermal systems," Renewable Energy, Elsevier, vol. 135(C), pages 437-449.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Herez, Amal & El Hage, Hicham & Lemenand, Thierry & Ramadan, Mohamad & Khaled, Mahmoud, 2021. "Parabolic trough photovoltaic/thermal hybrid system: Thermal modeling and parametric analysis," Renewable Energy, Elsevier, vol. 165(P1), pages 224-236.
    2. Li, Xianli & Zhang, Xinya & Wang, Zhiyuan & Wang, Changfeng & Yao, Wanxiang & Xu, Xin & Zheng, Shaojuan, 2022. "Dust accumulation effect of glazing cover inner surface on the performance of transpired solar air collector," Renewable Energy, Elsevier, vol. 195(C), pages 648-656.
    3. Yang, Liu & Du, Kai, 2020. "Thermo-economic analysis of a novel parabolic trough solar collector equipped with preheating system and canopy," Energy, Elsevier, vol. 211(C).
    4. Gowtham Vedulla & Anbazhagan Geetha & Ramalingam Senthil, 2022. "Review of Strategies to Mitigate Dust Deposition on Solar Photovoltaic Systems," Energies, MDPI, vol. 16(1), pages 1-28, December.
    5. Alami Merrouni, Ahmed & Conceição, Ricardo & Mouaky, Ammar & Silva, Hugo Gonçalves & Ghennioui, Abdellatif, 2020. "CSP performance and yield analysis including soiling measurements for Morocco and Portugal," Renewable Energy, Elsevier, vol. 162(C), pages 1777-1792.
    6. Wu, Yubo & Du, Jianqiang & Liu, Guangxin & Ma, Danzhu & Jia, Fengrui & Klemeš, Jiří Jaromír & Wang, Jin, 2022. "A review of self-cleaning technology to reduce dust and ice accumulation in photovoltaic power generation using superhydrophobic coating," Renewable Energy, Elsevier, vol. 185(C), pages 1034-1061.
    7. Mayhoub, M.S. & Elqattan, Ahmed A. & Algendy, Algendy S., 2021. "Experimental investigation of dust accumulation effect on the performance of tubular daylight guidance systems," Renewable Energy, Elsevier, vol. 169(C), pages 726-737.
    8. Fan, Siyuan & Wang, Xiao & Cao, Shengxian & Wang, Yu & Zhang, Yanhui & Liu, Bingzheng, 2022. "A novel model to determine the relationship between dust concentration and energy conversion efficiency of photovoltaic (PV) panels," Energy, Elsevier, vol. 252(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Conceição, Ricardo & González-Aguilar, José & Merrouni, Ahmed Alami & Romero, Manuel, 2022. "Soiling effect in solar energy conversion systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    2. Yan, Suying & Zhao, Sitong & Ma, Xiaodong & Ming, Tingzhen & Wu, Ze & Zhao, Xiaoyan & Ma, Rui, 2020. "Thermoelectric and exergy output performance of a Fresnel-based HCPV/T at different dust densities," Renewable Energy, Elsevier, vol. 159(C), pages 801-811.
    3. Alshawaf, Mohammad & Poudineh, Rahmatallah & Alhajeri, Nawaf S., 2020. "Solar PV in Kuwait: The effect of ambient temperature and sandstorms on output variability and uncertainty," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    4. Chiteka, Kudzanayi & Arora, Rajesh & Sridhara, S.N. & Enweremadu, C.C., 2021. "Influence of irradiance incidence angle and installation configuration on the deposition of dust and dust-shading of a photovoltaic array," Energy, Elsevier, vol. 216(C).
    5. Arias, I. & Cardemil, J. & Zarza, E. & Valenzuela, L. & Escobar, R., 2022. "Latest developments, assessments and research trends for next generation of concentrated solar power plants using liquid heat transfer fluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    6. Alami Merrouni, Ahmed & Conceição, Ricardo & Mouaky, Ammar & Silva, Hugo Gonçalves & Ghennioui, Abdellatif, 2020. "CSP performance and yield analysis including soiling measurements for Morocco and Portugal," Renewable Energy, Elsevier, vol. 162(C), pages 1777-1792.
    7. Ullah, Asad & Amin, Amir & Haider, Turab & Saleem, Murtaza & Butt, Nauman Zafar, 2020. "Investigation of soiling effects, dust chemistry and optimum cleaning schedule for PV modules in Lahore, Pakistan," Renewable Energy, Elsevier, vol. 150(C), pages 456-468.
    8. Krzysztof Pytel & Wiktor Hudy, 2022. "Use of Evolutionary Algorithm for Identifying Quantitative Impact of PM2.5 and PM10 on PV Power Generation," Energies, MDPI, vol. 15(21), pages 1-24, November.
    9. Lu, Hao & Lu, Lin & Wang, Yuanhao, 2016. "Numerical investigation of dust pollution on a solar photovoltaic (PV) system mounted on an isolated building," Applied Energy, Elsevier, vol. 180(C), pages 27-36.
    10. Heinrich, Matthias & Meunier, Simon & Samé, Allou & Quéval, Loïc & Darga, Arouna & Oukhellou, Latifa & Multon, Bernard, 2020. "Detection of cleaning interventions on photovoltaic modules with machine learning," Applied Energy, Elsevier, vol. 263(C).
    11. Klugmann-Radziemska, Ewa, 2015. "Degradation of electrical performance of a crystalline photovoltaic module due to dust deposition in northern Poland," Renewable Energy, Elsevier, vol. 78(C), pages 418-426.
    12. Saheli Sengupta & Aritra Ghosh & Tapas K. Mallick & Chandan Kumar Chanda & Hiranmay Saha & Indrajit Bose & Joydip Jana & Samarjit Sengupta, 2021. "Model Based Generation Prediction of SPV Power Plant Due to Weather Stressed Soiling," Energies, MDPI, vol. 14(17), pages 1-16, August.
    13. Sahar Bouaddi & Aránzazu Fernández-García & Chris Sansom & Jon Ander Sarasua & Fabian Wolfertstetter & Hicham Bouzekri & Florian Sutter & Itiziar Azpitarte, 2018. "A Review of Conventional and Innovative- Sustainable Methods for Cleaning Reflectors in Concentrating Solar Power Plants," Sustainability, MDPI, vol. 10(11), pages 1-25, October.
    14. Merchán, R.P. & Santos, M.J. & Medina, A. & Calvo Hernández, A., 2022. "High temperature central tower plants for concentrated solar power: 2021 overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    15. Picotti, G. & Borghesani, P. & Cholette, M.E. & Manzolini, G., 2018. "Soiling of solar collectors – Modelling approaches for airborne dust and its interactions with surfaces," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2343-2357.
    16. Karim Menoufi, 2017. "Dust Accumulation on the Surface of Photovoltaic Panels: Introducing the Photovoltaic Soiling Index (PVSI)," Sustainability, MDPI, vol. 9(6), pages 1-12, June.
    17. Simone Pedrazzi & Giulio Allesina & Alberto Muscio, 2018. "Are Nano-Composite Coatings the Key for Photovoltaic Panel Self-Maintenance: An Experimental Evaluation," Energies, MDPI, vol. 11(12), pages 1-13, December.
    18. Aránzazu Fernández-García & Adel Juaidi & Florian Sutter & Lucía Martínez-Arcos & Francisco Manzano-Agugliaro, 2018. "Solar Reflector Materials Degradation Due to the Sand Deposited on the Backside Protective Paints," Energies, MDPI, vol. 11(4), pages 1-20, March.
    19. Lu, Hao & Zhao, Wenjun, 2019. "CFD prediction of dust pollution and impact on an isolated ground-mounted solar photovoltaic system," Renewable Energy, Elsevier, vol. 131(C), pages 829-840.
    20. Abdelhady, Suzan, 2021. "Performance and cost evaluation of solar dish power plant: sensitivity analysis of levelized cost of electricity (LCOE) and net present value (NPV)," Renewable Energy, Elsevier, vol. 168(C), pages 332-342.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:152:y:2020:i:c:p:529-539. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.