IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v151y2020icp255-262.html
   My bibliography  Save this article

The alkali metal occurrence characteristics and its release and conversion during wheat straw pyrolysis

Author

Listed:
  • Zhang, Yufeng
  • Xie, Xingyun
  • Zhao, Jing
  • Wei, Xiaolin

Abstract

Biomass is an abundant and clean resource with good application value. However, due to high contain of alkali metals, it causes boiler’s corrosion and slagging during utilization. In this paper, pyrolysis experiments were carried out from 200 to 1000 °C and a series of detection methods are applied to explore occurrence, release and conversion characteristics of wheat straw. When temperatures are raised from 200 to 1000 °C, water-soluble K releases first. Then NH4Ac soluble K converts to water-soluble K. It is found that NO3− content is high, which accounts for 27.11% of total anions. At low temperatures (<400 °C) 35.50% K will release as KNO3, which is larger than that of the solid fuels with less NO3−. Meanwhile part of K and Cl enriches on particles surface due to carrying of moisture. When temperatures are higher than 400 °C, K is mainly released in the form of KCl. As KCl on the sample surface is released, K and Cl inside the sample can’t reach the sample surface. At 600 °C, the total KCl content increases to the maximum. Furthermore it is found that NH4Ac soluble K can convert into water-soluble K. When it is 800 °C, K release is 53.66%. And K release accounts for 55.26% at 1000 °C.

Suggested Citation

  • Zhang, Yufeng & Xie, Xingyun & Zhao, Jing & Wei, Xiaolin, 2020. "The alkali metal occurrence characteristics and its release and conversion during wheat straw pyrolysis," Renewable Energy, Elsevier, vol. 151(C), pages 255-262.
  • Handle: RePEc:eee:renene:v:151:y:2020:i:c:p:255-262
    DOI: 10.1016/j.renene.2019.11.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014811931688X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.11.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Dongyin & Wang, Yuhao & Wang, Yang & Li, Sen & Wei, Xiaolin, 2016. "Release of alkali metals during co-firing biomass and coal," Renewable Energy, Elsevier, vol. 96(PA), pages 91-97.
    2. Sandberg, Jan & Karlsson, Christer & Fdhila, Rebei Bel, 2011. "A 7Â year long measurement period investigating the correlation of corrosion, deposit and fuel in a biomass fired circulated fluidized bed boiler," Applied Energy, Elsevier, vol. 88(1), pages 99-110, January.
    3. Liu, Yingzu & He, Yong & Wang, Zhihua & Xia, Jun & Wan, Kaidi & Whiddon, Ronald & Cen, Kefa, 2018. "Characteristics of alkali species release from a burning coal/biomass blend," Applied Energy, Elsevier, vol. 215(C), pages 523-531.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ning Li & Jiale Zhang & Zhihe Li & Yongjun Li, 2020. "Characteristics of Aerosol Formation and Emissions During Corn Stalk Pyrolysis," Energies, MDPI, vol. 13(22), pages 1-15, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Zhen & Liu, Jing & Shen, Fenghua & Wang, Zhen, 2020. "Temporal release behavior of potassium during pyrolysis and gasification of sawdust particles," Renewable Energy, Elsevier, vol. 156(C), pages 98-106.
    2. Cao, Wenhan & Martí-Rosselló, Teresa & Li, Jun & Lue, Leo, 2019. "Prediction of potassium compounds released from biomass during combustion," Applied Energy, Elsevier, vol. 250(C), pages 1696-1705.
    3. Munawar, Muhammad Assad & Khoja, Asif Hussain & Naqvi, Salman Raza & Mehran, Muhammad Taqi & Hassan, Muhammad & Liaquat, Rabia & Dawood, Usama Fida, 2021. "Challenges and opportunities in biomass ash management and its utilization in novel applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    4. Tong, Zi-Xiang & Li, Ming-Jia & He, Ya-Ling & Tan, Hou-Zhang, 2017. "Simulation of real time particle deposition and removal processes on tubes by coupled numerical method," Applied Energy, Elsevier, vol. 185(P2), pages 2181-2193.
    5. Lupiáñez, Carlos & Carmen Mayoral, M. & Díez, Luis I. & Pueyo, Eloy & Espatolero, Sergio & Manuel Andrés, J., 2016. "The role of limestone during fluidized bed oxy-combustion of coal and biomass," Applied Energy, Elsevier, vol. 184(C), pages 670-680.
    6. Shi, Kaiqi & Oladejo, Jumoke Mojisola & Yan, Jiefeng & Wu, Tao, 2019. "Investigation on the interactions among lignocellulosic constituents and minerals of biomass and their influences on co-firing," Energy, Elsevier, vol. 179(C), pages 129-137.
    7. Quan, Jinxia & Miao, Zhenwu & Lin, Yousheng & Lv, Juan & Liu, Hailu & Feng, Chunzhou & Jiang, Enchen & Hu, Zhifeng, 2023. "Agglomeration mechanism of Fe2O3/Al2O3 oxygen carrier in chemical looping gasification," Energy, Elsevier, vol. 284(C).
    8. Zhao, Jing & Li, Bo & Wei, Xiaolin & Zhang, Yufeng & Li, Teng, 2020. "Slagging characteristics caused by alkali and alkaline earth metals during municipal solid waste and sewage sludge co-incineration," Energy, Elsevier, vol. 202(C).
    9. Yoonah Jeong & Ye-Eun Lee & I-Tae Kim, 2020. "Characterization of Sewage Sludge and Food Waste-Based Biochar for Co-Firing in a Coal-Fired Power Plant: A Case Study in Korea," Sustainability, MDPI, vol. 12(22), pages 1-12, November.
    10. Javier Royo & Paula Canalís & Sebastián Zapata & Maider Gómez & Carmen Bartolomé, 2022. "Ash Behaviour during Combustion of Agropellets Produced by an Agro-Industry—Part 2: Chemical Characterization of Sintering and Deposition," Energies, MDPI, vol. 15(4), pages 1-20, February.
    11. Izabella Maj, 2022. "Significance and Challenges of Poultry Litter and Cattle Manure as Sustainable Fuels: A Review," Energies, MDPI, vol. 15(23), pages 1-17, November.
    12. Eo, Jae Won & Kim, Min Jun & Jeong, In Seon & Cho, LaHoon & Kim, Seok Jun & Park, Sunyong & Kim, Dae Hyun, 2021. "Enhancing thermal efficiency of wood pellet boilers by improving inlet air characteristics," Energy, Elsevier, vol. 228(C).
    13. Li, Fenghai & Li, Yang & Fan, Hongli & Wang, Tao & Guo, Mingxi & Fang, Yitian, 2019. "Investigation on fusion characteristics of deposition from biomass vibrating grate furnace combustion and its modification," Energy, Elsevier, vol. 174(C), pages 724-734.
    14. Ye-Eun Lee & Dong-Chul Shin & Yoonah Jeong & I-Tae Kim & Yeong-Seok Yoo, 2019. "Effects of Pyrolysis Temperature and Retention Time on Fuel Characteristics of Food Waste Feedstuff and Compost for Co-Firing in Coal Power Plants," Energies, MDPI, vol. 12(23), pages 1-14, November.
    15. Kafle, Sagar & Euh, Seung Hee & Cho, Lahoon & Nam, Yun Seong & Oh, Kwang Cheol & Choi, Yun Sung & Oh, Jae-Heun & Kim, Dae Hyun, 2017. "Tar fouling reduction in wood pellet boiler using additives and study the effects of additives on the characteristics of pellets," Energy, Elsevier, vol. 129(C), pages 79-85.
    16. Yao, Xiwen & Zheng, Yan & Zhou, Haodong & Xu, Kaili & Xu, Qingwei & Li, Li, 2020. "Effects of biomass blending, ashing temperature and potassium addition on ash sintering behaviour during co-firing of pine sawdust with a Chinese anthracite," Renewable Energy, Elsevier, vol. 147(P1), pages 2309-2320.
    17. Guo, Feihong & He, Yi & Hassanpour, Ali & Gardy, Jabbar & Zhong, Zhaoping, 2020. "Thermogravimetric analysis on the co-combustion of biomass pellets with lignite and bituminous coal," Energy, Elsevier, vol. 197(C).
    18. Chen, Guanyi & Wenga, Terrence & Ma, Wenchao & Lin, Fawei, 2019. "Theoretical and experimental study of gas-phase corrosion attack of Fe under simulated municipal solid waste combustion: Influence of KCl, SO2, HCl, and H2O vapour," Applied Energy, Elsevier, vol. 247(C), pages 630-642.
    19. Wan, Kaidi & Vervisch, Luc & Gao, Zhenxun & Domingo, Pascale & Jiang, Chongwen & Xia, Jun & Wang, Zhihua, 2020. "Development of reduced and optimized reaction mechanism for potassium emissions during biomass combustion based on genetic algorithms," Energy, Elsevier, vol. 211(C).
    20. Chen, Chunxiang & Huang, Yuting & Qin, Songheng & Huang, Dengchang & Bu, Xiaoyan & Huang, Haozhong, 2020. "Slagging tendency estimation of aquatic microalgae and comparison with terrestrial biomass and waste," Energy, Elsevier, vol. 194(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:151:y:2020:i:c:p:255-262. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.